Xue Lingfeng, Yan Nieng, Song Chen
Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
School of Life Sciences, State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2424694122. doi: 10.1073/pnas.2424694122. Epub 2025 May 29.
Voltage-gated calcium (Ca[Formula: see text]) channels are pivotal in cellular signaling due to their selective calcium ion permeation upon membrane depolarization. While previous studies have established the highly selective permeability of Ca[Formula: see text] channels, the detailed molecular mechanism remains elusive. Here, we use extensive atomistic molecular dynamics simulations to elucidate the mechanisms governing ion permeation and valence selectivity in Ca[Formula: see text]1 channels. Employing the electronic continuum correction method, we simulated a calcium conductance of approximately 9 to 11 pS, aligning closely with experimental measurement. Our simulations uncovered a three-ion knock-on mechanism critical for efficient calcium ion permeation, necessitating the binding of at least two calcium ions within the selectivity filter (SF) and the subsequent entry of a third ion. In silico mutation simulations further validated the importance of multi-ion coordination in the SF for efficient ion permeation, identifying two critical residues, D706 and E1101, that are essential for the binding of two calcium ions in the SF. Moreover, we explored the competitive permeation of calcium and sodium ions and obtained a valence selectivity favoring calcium over sodium at a ratio of approximately 35:1 under the bication condition. This selectivity arises from the strong electrostatic interactions of calcium ions in the confined SF and the three-ion knock-on mechanism. Our findings provide quantitative insights into the molecular underpinnings of Ca[Formula: see text] channel function, with implications for understanding calcium-dependent cellular processes.
电压门控钙(Ca[公式:见正文])通道在细胞信号传导中起着关键作用,因为它们在膜去极化时具有选择性钙离子通透性。虽然先前的研究已经证实了Ca[公式:见正文]通道具有高度选择性通透性,但其详细的分子机制仍然难以捉摸。在这里,我们使用广泛的原子分子动力学模拟来阐明Ca[公式:见正文]1通道中离子渗透和价态选择性的控制机制。采用电子连续介质校正方法,我们模拟了约9至11 pS的钙电导,与实验测量结果密切吻合。我们的模拟揭示了一种对高效钙离子渗透至关重要的三离子连锁机制,这需要在选择性过滤器(SF)内至少结合两个钙离子,随后第三个离子进入。计算机突变模拟进一步验证了SF中多离子配位对高效离子渗透的重要性,确定了两个关键残基D706和E1101,它们对于SF中两个钙离子的结合至关重要。此外,我们研究了钙和钠离子的竞争性渗透,在双阳离子条件下获得了钙对钠的价态选择性,比例约为35:1。这种选择性源于受限SF中钙离子的强静电相互作用和三离子连锁机制。我们的研究结果为Ca[公式:见正文]通道功能的分子基础提供了定量见解,对理解钙依赖的细胞过程具有重要意义。