Suppr超能文献

胰岛素类似物中基于核磁共振的盐桥:通过电荷缩放解决分子动力学中的人为过度结合问题。

NMR-Derived Salt Bridges in Insulin Analogue: Resolving Artifactual Overbinding in Molecular Dynamics via Charge Scaling.

作者信息

Le Nguyen Ngoc Lan, Žák Jiří, Jungwirth Pavel, Lepšík Martin

机构信息

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542, 160 00 Prague 6, Czech Republic.

出版信息

J Phys Chem Lett. 2025 Jul 24;16(29):7436-7442. doi: 10.1021/acs.jpclett.5c01786. Epub 2025 Jul 15.

Abstract

Salt bridges are ionic interactions that are of great importance in protein recognition. However, their structural description using X-ray crystallography or NMR may be inconclusive. Classical molecular dynamics (MD) used for the interpretation neglects electronic polarization, which results in artifactual overbinding. Here, we resolve the problem via charge scaling, which accounts for electronic polarization in a mean-field way. We study three salt bridges in insulin analogue. New NMR ensembles are generated via NOE-restrained MD using ff19SB and CHARMM36m force fields and the scaled-charge prosECCo75. Tens of μs of unrestrained MD show in a statistically converged manner that ff19SB induces a non-native salt bridge. This behavior is quantified via umbrella sampling of salt bridge dissociation, which indicates a rather high strength of up to 4 and 5 kcal mol for CHARMM36m and ff19SB, respectively. In contrast, prosECCo75 gives a biologically reasonable dissociation barrier of 1 kcal mol. Our results indicate that a physically justified description of charge-charge interactions within a nonpolarizable MD framework reliably describes aqueous biomolecular systems.

摘要

盐桥是离子相互作用,在蛋白质识别中具有重要意义。然而,使用X射线晶体学或核磁共振对其结构的描述可能并不确定。用于解释的经典分子动力学(MD)忽略了电子极化,这导致了人为的过度结合。在这里,我们通过电荷缩放解决了这个问题,电荷缩放以平均场的方式考虑了电子极化。我们研究了胰岛素类似物中的三个盐桥。使用ff19SB和CHARMM36m力场以及缩放电荷的prosECCo75通过NOE约束的MD生成了新的核磁共振系综。数十微秒的无约束MD以统计收敛的方式表明,ff19SB诱导了一个非天然盐桥。这种行为通过盐桥解离的伞形采样进行量化,结果表明CHARMM36m和ff19SB的盐桥强度相当高,分别高达4和5千卡/摩尔。相比之下,prosECCo75给出了1千卡/摩尔的生物学合理解离能垒。我们的结果表明,在不可极化的MD框架内对电荷-电荷相互作用进行合理的物理描述能够可靠地描述水性生物分子系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ee8/12302216/10a02f349ffc/jz5c01786_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验