Suppr超能文献

无针注射器超音速气固两相喷射机理的数值研究

Numerical study on the supersonic gas-solid two-phase injection mechanism of needle-free syringe.

作者信息

Mo Xiao, Xiao Yang, Qing Kai-Xiong, Zhang Feng, Yu Hongshi

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China.

Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.

出版信息

PLoS One. 2025 May 29;20(5):e0322571. doi: 10.1371/journal.pone.0322571. eCollection 2025.

Abstract

Supersonic gas-solid injection technology finds extensive use in drug particle delivery systems. However, the combined impact of particle diameter and mass flow rate on the delivery efficiency remain insufficiently explored. Within the Euler-Lagrange framework, this study utilizes the discrete phase method (DPM) for the numerical simulation of supersonic gas-particle flow in a needle-free injector. After validating the model's accuracy with experiment results, further investigations were conducted into the influences of particle size and mass flow rate on particle behavior and flow field properties. The results indicate that the impact of larger particles on the compressible structure is stronger, while higher mass flow rate absorbs greater energy from the gas phase, reducing the gas expansion capacity, which results in lower velocity, Mach number, and higher temperature. The jet core zone is approximately x/X = 0.3 in length. Outside core zone, the gas velocity rapidly decays and temperature rises sharply. Within the jet core zone, drug particles are accelerated and cooled, while beyond core zone, they decelerate and heat up. The strongest inter-phase interactions occur primarily in the nozzle expansion area and the jet core zone. Smaller particles reach maximum velocity upstream. This implies that in designing needle-free injectors, the nozzle-to-skin distance must match the drug particle diameter to achieve maximum penetration effectiveness. Furthermore, the particle temperature decreases with smaller sizes. As the particle diameter rises from 10 μm to 100 μm, the minimum temperatures of the particles are 145 K and 264 K, respectively, indicating the need to match the particle diameter with the minimum temperature at which the drug particles remain effective. Additionally, higher mass flow rate doses reduce injection velocity and penetration ability, necessitating the rational control of the administered dose range. These results offer significant theoretical guidance for the design and improvement of needle-free injection.

摘要

超音速气固注射技术在药物颗粒输送系统中有着广泛的应用。然而,粒径和质量流率对输送效率的综合影响仍未得到充分研究。在欧拉-拉格朗日框架内,本研究采用离散相方法(DPM)对无针注射器中超音速气固流动进行数值模拟。在用实验结果验证模型准确性后,进一步研究了粒径和质量流率对颗粒行为和流场特性的影响。结果表明,较大颗粒对可压缩结构的影响更强,而较高的质量流率从气相吸收更多能量,降低了气体膨胀能力,导致速度、马赫数降低,温度升高。射流核心区长度约为x/X = 0.3。在核心区之外,气体速度迅速衰减,温度急剧上升。在射流核心区内,药物颗粒被加速并冷却,而在核心区之外,它们减速并升温。最强的相间相互作用主要发生在喷嘴膨胀区和射流核心区。较小颗粒在核心区上游达到最大速度。这意味着在设计无针注射器时,喷嘴到皮肤的距离必须与药物颗粒直径相匹配,以实现最大穿透效果。此外,颗粒温度随粒径减小而降低。当粒径从10μm增加到100μm时,颗粒的最低温度分别为145K和264K,这表明需要使颗粒直径与药物颗粒保持有效所需的最低温度相匹配。此外,较高的质量流率剂量会降低注射速度和穿透能力,因此需要合理控制给药剂量范围。这些结果为无针注射的设计和改进提供了重要的理论指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验