Rathore Surabhi, Africa Pasquale C, Ballarin Francesco, Pichi Federico, Girfoglio Michele, Rozza Gianluigi
mathLab, Mathematics Area, SISSA Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste, 34136, Italy.
mathLab, Mathematics Area, SISSA Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste, 34136, Italy.
Comput Methods Programs Biomed. 2025 Sep;269:108813. doi: 10.1016/j.cmpb.2025.108813. Epub 2025 May 24.
Accurately defining outflow boundary conditions in patient-specific models poses significant challenges due to complex vascular morphologies, physiological conditions, and high computational demands. These challenges hinder the computation of realistic and reliable cardiovascular (CV) haemodynamics by incorporating clinical data such as 4D magnetic resonance imaging. The objective is to control the outflow boundary conditions to optimize CV haemodynamics and minimize the discrepancy between target and computed flow velocity profiles. This paper presents a projection-based reduced order modelling (ROM) framework for unsteady parametrized optimal control problems (OCPs) arising from CV applications.
Numerical solutions of OCPs require substantial computational resources, highlighting the need for robust and efficient ROMs to perform real-time and many-query simulations. We investigate the performance of a projection-based reduction technique that relies on the offline-online paradigm, enabling significant computational cost savings. In this study, the fluid flow is governed by unsteady Navier-Stokes equations with physical parametric dependence, i.e. the Reynolds number. The Galerkin finite element method is used to compute the high-fidelity solutions in the offline phase. We implemented a nested-proper orthogonal decomposition (nested-POD) for fast simulation of OCPs that encompasses two stages: temporal compression for reducing dimensionality in time, followed by parametric-space compression on the precomputed POD modes.
We tested the efficacy of the proposed methodology on vascular models, namely an idealized bifurcation geometry and a patient-specific coronary artery bypass graft, incorporating stress control at the outflow boundary and observing consistent speed-up with respect to high-fidelity strategies. We observed the inter-dependency between the state, adjoint, and control solutions and presented detailed flow field characteristics, providing valuable insights into factors such as atherosclerosis risk.
The projection-based ROM framework provides an efficient and accurate approach for simulating parametrized CV flows. By enabling real-time, patient-specific modelling, this advancement supports personalized medical interventions and improves the predictions of disease progression in vascular regions.
由于血管形态复杂、生理条件特殊以及计算需求高,在患者特异性模型中准确界定流出边界条件面临重大挑战。这些挑战阻碍了通过纳入诸如4D磁共振成像等临床数据来计算现实且可靠的心血管(CV)血流动力学。目的是控制流出边界条件,以优化CV血流动力学,并最小化目标流速剖面与计算流速剖面之间的差异。本文提出了一种基于投影的降阶建模(ROM)框架,用于解决CV应用中出现的非定常参数化最优控制问题(OCP)。
OCP的数值解需要大量计算资源,这凸显了对强大且高效的ROM进行实时和多查询模拟的需求。我们研究了一种基于投影的降阶技术的性能,该技术依赖离线-在线范式,能够显著节省计算成本。在本研究中,流体流动由具有物理参数依赖性(即雷诺数)的非定常纳维-斯托克斯方程控制。伽辽金有限元方法用于在离线阶段计算高保真解。我们实现了一种嵌套适当正交分解(nested-POD),用于快速模拟OCP,它包括两个阶段:时间压缩以降低时间维度,然后在预先计算的POD模式上进行参数空间压缩。
我们在血管模型上测试了所提出方法的有效性,即理想化的分叉几何结构和患者特异性冠状动脉旁路移植模型,在流出边界纳入应力控制,并观察到相对于高保真策略有一致的加速效果。我们观察到状态、伴随和控制解之间的相互依赖性,并呈现了详细的流场特征,为诸如动脉粥样硬化风险等因素提供了有价值的见解。
基于投影的ROM框架为模拟参数化CV流动提供了一种高效且准确的方法。通过实现实时、患者特异性建模,这一进展支持个性化医疗干预,并改善了对血管区域疾病进展的预测。