Zhang Liying, Sun Yihan, Huang Shasha, Xu Hongze, Zhang Zejun, Jiang Min, Li Boxiao, Zong Lu, Wang Shuxue, Zhang Jianming
Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China.
Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China.
Carbohydr Polym. 2025 Sep 1;363:123705. doi: 10.1016/j.carbpol.2025.123705. Epub 2025 May 6.
Bio-based adhesives have drawn growing attention due to the environmental and ecological issues posed by petroleum-based adhesives. However, their practical applications remain constrained by the limited adhesion strength and insufficient humidity intolerance. Herein, we have developed a bio-based adhesive using poly(acrylic acid)-grafted cellulose nanocrystals (CNC-PAA) and poly(vinyl alcohol) (PVA) through the construction of highly dense non-covalent supramolecular networks. The abundance of active groups and improved cohesion endow the PVA/CNC-PAA adhesive excellent adhesion to diverse substrates, with a strength exceeding 7.52 MPa for ceramics. The rigid network structure and hydrophilicity of CNC-PAA markedly improve the adhesive's stability and humidity resistance, enabling it to retain 75 % of its maximum adhesion strength even at 100 % relative humidity. Furthermore, the high density of hydrogen bonding and structured water allow the adhesive to maintain excellent adhesion at -196 °C. By modulating the hydrogen bonding via pH adjustment, this adhesive also exhibits on-demand adhesion-dispergation and recyclability. In addition, its bio-mass framework renders the adhesive biodegradable character. This work provides a novel approach for developing bio-based adhesives with high adhesion strength, humidity-resistance, and on-demand debonding properties, paving the way for sustainable adhesives in packaging, labeling, cryogenic, and other applications.
由于石油基胶粘剂带来的环境和生态问题,生物基胶粘剂受到了越来越多的关注。然而,它们的实际应用仍然受到粘附强度有限和耐湿性不足的限制。在此,我们通过构建高度致密的非共价超分子网络,开发了一种使用聚(丙烯酸)接枝纤维素纳米晶体(CNC-PAA)和聚乙烯醇(PVA)的生物基胶粘剂。大量的活性基团和改善的内聚力赋予了PVA/CNC-PAA胶粘剂对各种基材优异的粘附力,对陶瓷的粘附强度超过7.52MPa。CNC-PAA的刚性网络结构和亲水性显著提高了胶粘剂的稳定性和耐湿性,使其即使在100%相对湿度下仍能保持其最大粘附强度的75%。此外,高密度的氢键和结构化水使胶粘剂在-196°C时仍能保持优异的粘附力。通过调节pH值来调控氢键,这种胶粘剂还表现出按需粘附-分散和可回收性。此外,其生物质框架赋予了胶粘剂可生物降解的特性。这项工作为开发具有高粘附强度、耐湿性和按需脱粘性能的生物基胶粘剂提供了一种新方法,为包装、标签、低温及其他应用中的可持续胶粘剂铺平了道路。