Suppr超能文献

SorpVision:一个由计算机视觉驱动的用于胶凝材料吸水性分析的综合数据集。

SorpVision: A Comprehensive Dataset for Cementitious Sorptivity Analysis Powered by Computer Vision.

作者信息

Kabir Hossein, Wu Jordan, Dahal Sunav, Joo Tony, Garg Nishant

机构信息

Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

Sci Data. 2025 May 29;12(1):904. doi: 10.1038/s41597-025-05185-4.

Abstract

As the construction industry advances toward more efficient methods for assessing durability, the need for automated sorptivity evaluation has become increasingly critical. Consequently, this study introduces SorpVision, a dataset of 7,384 images (5,000 real and 2,384 synthetic) designed to support our custom computer vision-based framework for automated sorptivity evaluation in cementitious materials. Traditional methods, such as ASTM C1585, depend on manual weighing, which is time-consuming and limits measurement intervals. SorpVision, combined with a cost-effective USB camera setup and a robust vision algorithm, facilitates real-time water level detection in cementitious systems. The framework, trained using 1,440 data points from pastes with water-to-cement (w/c) ratios of 0.4-0.8 and curing durations of 1-7 days, achieves high predictive accuracy for initial and secondary sorptivities (R > 0.9 for cement pastes). Moreover, it generalizes well to mortar and concrete, yielding R values of 0.96 and 0.87 for initial sorptivity and 0.74 and 0.65 for secondary sorptivity, respectively. SorpVision offers an accurate, data-driven foundation for scalable, automated durability evaluations, supporting sustainable infrastructure development.

摘要

随着建筑行业朝着更高效的耐久性评估方法迈进,自动吸水率评估的需求变得越来越关键。因此,本研究引入了SorpVision,这是一个包含7384张图像(5000张真实图像和2384张合成图像)的数据集,旨在支持我们基于计算机视觉的自定义框架,用于胶凝材料的自动吸水率评估。传统方法,如ASTM C1585,依赖于人工称重,既耗时又限制了测量间隔。SorpVision与经济高效的USB摄像头设置和强大的视觉算法相结合,有助于在胶凝系统中进行实时水位检测。该框架使用来自水灰比(w/c)为0.4 - 0.8且养护时间为1 - 7天的浆料的1440个数据点进行训练,对初始吸水率和二次吸水率实现了较高的预测精度(水泥浆体的R > 0.9)。此外,它对砂浆和混凝土具有良好的通用性,初始吸水率的R值分别为0.96和0.87,二次吸水率的R值分别为0.74和0.65。SorpVision为可扩展的自动耐久性评估提供了一个准确的、数据驱动的基础,支持可持续基础设施发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cde/12123020/19b93c688ded/41597_2025_5185_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验