Suppr超能文献

质子固体氧化物电池空气电极侧性能的优化:进展与机器学习指导的展望

Optimization of Performance at Air Electrode Side for Protonic Solid Oxide Cells: Advances and Machine Learning Guided Perspectives.

作者信息

Zheng Fangyuan, Xiang Huanxin, Zhong Liangjie, Wang Xueling, Zhang Xiaohan, Su Qingwen, Tang Chunmei, Meng Ling, Du Lei, Jiao Feng, Aoki Yoshitaka, Yuan Baoyin, Wang Ning, Ye Siyu

机构信息

Huangpu Hydrogen Energy Innovation Center, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China.

School of Materials Science and Engineering, Xihua University, Chengdu, 610039, China.

出版信息

Small. 2025 Jul;21(29):e2503157. doi: 10.1002/smll.202503157. Epub 2025 May 29.

Abstract

Protonic solid oxide cell (P-SOC) is a novel type of solid oxide cell for hydrogen production and power generation. P-SOCs have garnered significant attention due to their advantages, such as the elimination of precious metals and high conversion efficiency. However, the commercialization of P-SOCs is currently hindered by suboptimal electrochemical performance, particularly at the air electrode side, where challenges in catalytic activity and ionic/electronic conductivity persist. Recently, strategies for designing advanced triple-conducting oxides, exsolution, and optimizing the air electrode-electrolyte interfaces have been proposed to improve the electrochemical reactive area, kinetics, and durability of air electrodes. Thereinto, machine learning (ML) techniques have emerged as powerful tools, playing a crucial role in the above topics. Despite these advancements, a comprehensive review synthesizing these innovative strategies and ML-guided advances and perspectives has been lacking in literature. This review comprehensively makes a summary of these methods and discusses their effects on cell performance. Importantly, the ML-guided perspectives and challenges in accelerating the optimization of these strategies and P-SOCs are proposed here. This paper not only offers valuable insights for understanding and optimizing performances at the air electrode side but also provides a roadmap for the rational design of superior air electrodes of P-SOCs.

摘要

质子传导型固体氧化物电池(P-SOC)是一种用于制氢和发电的新型固体氧化物电池。由于其优点,如无需贵金属和高转换效率,P-SOC已引起广泛关注。然而,P-SOC的商业化目前受到电化学性能欠佳的阻碍,特别是在空气电极一侧,催化活性以及离子/电子传导性方面仍存在挑战。最近,已提出设计先进的三导电氧化物、析出现象以及优化空气电极-电解质界面的策略,以改善空气电极的电化学反应面积、动力学和耐久性。其中,机器学习(ML)技术已成为强大工具,在上述主题中发挥着关键作用。尽管有这些进展,但文献中仍缺乏对这些创新策略以及ML引导的进展和观点进行综合综述的文章。本综述全面总结了这些方法,并讨论了它们对电池性能的影响。重要的是,本文在此提出了ML引导的观点以及加速这些策略和P-SOC优化过程中面临的挑战。本文不仅为理解和优化空气电极一侧的性能提供了有价值的见解,还为合理设计高性能P-SOC空气电极提供了路线图。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验