Suppr超能文献

急性主动脉夹层手术中的急性肾损伤预测模型:列线图的构建与验证

AKI prediction model in acute aortic dissection surgery: nomogram development and validation.

作者信息

Du Rui, Wang Lai, Wang Yan, Zhao Zhitao, Zhang Dahong, Zuo Shanshan

机构信息

Department of Intensive Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.

Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.

出版信息

Front Med (Lausanne). 2025 May 15;12:1562956. doi: 10.3389/fmed.2025.1562956. eCollection 2025.

Abstract

OBJECTIVES

This multicenter study developed and internally validated a biomarker-enhanced risk prediction nomogram integrating hemodynamic parameters and novel urinary biomarkers to stratify postoperative acute kidney injury (AKI) risks in patients undergoing emergency surgical repair for acute Stanford Type A aortic dissection (ATAAD).

METHODS

A cohort of 1,277 patients from the China Aortic Dissection Alliance (CADA) registry was chronologically split into derivation (70%,  = 894) and validation (30%,  = 383) sets. LASSO regression with 10-fold cross-validation (λ1SE criterion) was applied to identify non-redundant predictors from 34 candidate variables (e.g., cardiac dysfunction [LVEF <50% or INTERMACS 1-3]) and elevated urinary biomarkers. Multivariable logistic regression refined these predictors to establish independent risk factors for the final nomogram. Model performance was evaluated using the concordance index (C-index), area under the receiver operating characteristic curve (AUC-ROC), calibration plots (Brier score and Hosmer-Lemeshow test), and decision curve analysis (DCA) to quantify clinical utility.

RESULTS

Multivariable analysis identified seven independent predictors of postoperative AKI: preexisting cardiac dysfunction (adjusted odds ratio [aOR] = 2.17; 95% CI: 1.68-3.56), microvascular complications of diabetes (aOR = 3.26; 2.71-4.34), baseline renal impairment (aOR = 1.72; 1.36-3.29), blood urea nitrogen (BUN) ≥ 20 mg/dL (aOR = 2.19; 1.57-3.64), glomerular filtration rate (GFR) < 90 mL/min/1.73 m (aOR = 1.47; 1.02-2.13), serum creatinine >1.3 mg/dL (aOR = 3.28; 2.58-3.75), and peripheral vasculopathy (aOR = 1.78; 1.12-2.32). The model demonstrated strong discrimination (training AUC-ROC: 0.830 [0.802-0.858]; internal validation AUC-ROC: 0.786 [0.737-0.834]), calibration (Brier scores: 0.138 training, 0.141 validation), and clinical utility (net reclassification improvement [NRI] = 0.21,  = 0.001), with optimal decision thresholds at 40-60% probability.

CONCLUSION

The nomogram demonstrates superior preoperative discriminative accuracy in AKI following ATAAD repair surgery. External validation via the VASCUNET registry is planned to confirm generalizability.

摘要

目的

本多中心研究开发并内部验证了一种生物标志物增强的风险预测列线图,该列线图整合了血流动力学参数和新型尿液生物标志物,以对接受急性Stanford A型主动脉夹层(ATAAD)急诊手术修复的患者术后急性肾损伤(AKI)风险进行分层。

方法

将来自中国主动脉夹层联盟(CADA)登记处的1277例患者按时间顺序分为推导组(70%,n = 894)和验证组(30%,n = 383)。采用带有10倍交叉验证(λ1SE标准)的LASSO回归,从34个候选变量(如心脏功能障碍[左心室射血分数<50%或INTERMACS 1 - 3])和升高的尿液生物标志物中识别非冗余预测因子。多变量逻辑回归对这些预测因子进行优化,以建立最终列线图的独立危险因素。使用一致性指数(C指数)、受试者操作特征曲线下面积(AUC - ROC)、校准图(Brier评分和Hosmer - Lemeshow检验)以及决策曲线分析(DCA)评估模型性能,以量化临床效用。

结果

多变量分析确定了术后AKI的七个独立预测因子:既往心脏功能障碍(调整后的优势比[aOR]=2.17;95%置信区间:1.68 - 3.56)、糖尿病微血管并发症(aOR = 3.26;2.71 - 4.34)、基线肾功能损害(aOR = 1.72;1.36 - 3.29)、血尿素氮(BUN)≥20 mg/dL(aOR = 2.19;1.57 - 3.64)、肾小球滤过率(GFR)<90 mL/min/1.73 m²(aOR = 1.47;1.02 - 2.13)、血清肌酐>1.3 mg/dL(aOR = 3.28;2.58 - 3.75)和外周血管病变(aOR = 1.78;1.12 - 2.32)。该模型表现出较强的区分能力(训练AUC - ROC:0.830[0.802 - 0.858];内部验证AUC - ROC:0.786[0.737 - 0.834])、校准能力(Brier评分:训练时为0.138,验证时为0.141)和临床效用(净重新分类改善[NRI]=0.21,P = 0.001),最佳决策阈值为概率40 - 60%。

结论

该列线图在ATAAD修复手术后的AKI术前鉴别准确性方面表现优异。计划通过VASCUNET登记处进行外部验证,以确认其可推广性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3120/12119464/005da4264129/fmed-12-1562956-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验