文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

首次接触:3D呼吸道细胞模型中H5N1流感病毒与糖胺聚糖相互作用解码的跨学科指南。

First contact: an interdisciplinary guide into decoding H5N1 influenza virus interactions with glycosaminoglycans in 3D respiratory cell models.

作者信息

Hassan Mariam, Kaifer Bianca, Christian Tyra, Quaas Xenia Tamara, Mueller Johannes, Boehm Heike

机构信息

Institute of Pharmacy and Molecular Biotechnology, Faculty of Engineering Sciences, Heidelberg University, Heidelberg, Germany.

Max Planck Institute for Medical Research (MPIMR), Cellular Biophysics, Heidelberg, Germany.

出版信息

Front Cell Infect Microbiol. 2025 May 15;15:1596955. doi: 10.3389/fcimb.2025.1596955. eCollection 2025.


DOI:10.3389/fcimb.2025.1596955
PMID:40444153
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12119590/
Abstract

The human respiratory system is vulnerable to viral infections. The influenza virus family alone accounts for one billion reported cases annually, some of which are severe and can be fatal. Among these, Influenza A viruses (IAVs) cause the most severe symptoms and course of disease. IAV has been a major health concern, especially since the emergence of the potentially pandemic avian H5N1 strain. However, despite the knowledge that IAVs recognize terminally attached sialic acids on the host cell surface for cell entry, the involvement of other glycans during early infection remains to be elucidated. In particular, the involvement of the alveolar epithelial glycocalyx as a last line of defense is often overlooked. Studying early infection of any virus in real time remains a challenge due to the currently available model systems and imaging techniques. Therefore, we extensively compare the use of different 3D cell systems and provide an overview of currently available scaffold-based and scaffold-free air-liquid interface (ALI) models. In addition, we discuss in detail the preferred use of a recently developed 3D organ tissue equivalent (OTE) model incorporating solubilized extracellular matrix components (sECM) to study viral interaction with glycosaminoglycans (GAGs) during the early stages of IAV infection. We further discuss and recommend the use of various synthetic virus models over IAV virions to reduce complexity by focusing only on surface protein interactions while simultaneously lowering the required biosafety levels, including, but not limited to virus-like particles (VLPs) or DNA origami. Finally, we delve into potential labeling strategies for IAV or IAV-like particles by reviewing internal and external labeling strategies with quantum dots (QDs) and potential GAG labeling, combined with a recommendation to combine high spatial resolution imaging techniques with high temporal resolution tracking, such as single virus tracking.

摘要

人类呼吸系统易受病毒感染。仅流感病毒家族每年就报告有10亿例病例,其中一些病情严重甚至可能致命。在这些病例中,甲型流感病毒(IAV)引发的症状最为严重,病程也最为凶险。IAV一直是主要的健康问题,尤其是自具有大流行潜力的禽H5N1毒株出现以来。然而,尽管已知IAV通过识别宿主细胞表面末端连接的唾液酸进入细胞,但在早期感染过程中其他聚糖的作用仍有待阐明。特别是,作为最后一道防线的肺泡上皮糖萼的作用常常被忽视。由于目前可用的模型系统和成像技术,实时研究任何病毒的早期感染仍然是一项挑战。因此,我们广泛比较了不同3D细胞系统的使用情况,并概述了目前可用的基于支架和无支架的气液界面(ALI)模型。此外,我们详细讨论了最近开发的一种3D器官组织等效物(OTE)模型的优先使用,该模型包含溶解的细胞外基质成分(sECM),用于研究IAV感染早期病毒与糖胺聚糖(GAG)的相互作用。我们还进一步讨论并推荐使用各种合成病毒模型而非IAV病毒粒子,以通过仅关注表面蛋白相互作用来降低复杂性,同时降低所需的生物安全水平,包括但不限于病毒样颗粒(VLP)或DNA折纸。最后,我们通过回顾量子点(QD)的内部和外部标记策略以及潜在的GAG标记,深入探讨了IAV或IAV样颗粒的潜在标记策略,并建议将高空间分辨率成像技术与高时间分辨率跟踪相结合,如单病毒跟踪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c04/12119590/26a6e052ed0d/fcimb-15-1596955-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c04/12119590/69347ec16d5e/fcimb-15-1596955-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c04/12119590/34aadac50627/fcimb-15-1596955-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c04/12119590/a09437f1f413/fcimb-15-1596955-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c04/12119590/7fd17d64d3ec/fcimb-15-1596955-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c04/12119590/26a6e052ed0d/fcimb-15-1596955-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c04/12119590/69347ec16d5e/fcimb-15-1596955-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c04/12119590/34aadac50627/fcimb-15-1596955-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c04/12119590/a09437f1f413/fcimb-15-1596955-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c04/12119590/7fd17d64d3ec/fcimb-15-1596955-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c04/12119590/26a6e052ed0d/fcimb-15-1596955-g005.jpg

相似文献

[1]
First contact: an interdisciplinary guide into decoding H5N1 influenza virus interactions with glycosaminoglycans in 3D respiratory cell models.

Front Cell Infect Microbiol. 2025-5-15

[2]
pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs.

J Virol. 2017-5-12

[3]
Differential Modulation of Innate Immune Responses in Human Primary Cells by Influenza A Viruses Carrying Human or Avian Nonstructural Protein 1.

J Virol. 2019-12-12

[4]
Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options.

mBio. 2014-2-4

[5]
Application of a Biologically Contained Reporter System To Study Gain-of-Function H5N1 Influenza A Viruses with Pandemic Potential.

mSphere. 2020-8-26

[6]
H5N1 Influenza A Virus PB1-F2 Relieves HAX-1-Mediated Restriction of Avian Virus Polymerase PA in Human Lung Cells.

J Virol. 2018-5-14

[7]
The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses.

J Virol. 2014-3-5

[8]
Tropism and Infectivity of a Seasonal A(H1N1) and a Highly Pathogenic Avian A(H5N1) Influenza Virus in Primary Differentiated Ferret Nasal Epithelial Cell Cultures.

J Virol. 2019-5-1

[9]
Hemagglutinin Cleavability, Acid Stability, and Temperature Dependence Optimize Influenza B Virus for Replication in Human Airways.

J Virol. 2019-12-12

[10]
Viral Determinants in H5N1 Influenza A Virus Enable Productive Infection of HeLa Cells.

J Virol. 2020-1-31

本文引用的文献

[1]
Live imaging of the extracellular matrix with a glycan-binding fluorophore.

Nat Methods. 2025-5

[2]
3D-printed airway model as a platform for SARS-CoV-2 infection and antiviral drug testing.

Biomaterials. 2024-12

[3]
Analysis of gene expression dynamics and differential expression in viral infections using generalized linear models and quasi-likelihood methods.

Front Microbiol. 2024-4-9

[4]
The breathtaking world of human respiratory in vitro models: Investigating lung diseases and infections in 3D models, organoids, and lung-on-chip.

Eur J Immunol. 2024-3

[5]
The pathogenesis of influenza in intact alveoli: virion endocytosis and its effects on the lung's air-blood barrier.

Front Immunol. 2024

[6]
Hierarchical assembly is more robust than egalitarian assembly in synthetic capsids.

Proc Natl Acad Sci U S A. 2024-2-13

[7]
A single immunization with H5N1 virus-like particle vaccine protects chickens against divergent H5N1 influenza viruses and vaccine efficacy is determined by adjuvant and dosage.

Emerg Microbes Infect. 2024-12

[8]
Development of biomimetic co-culture and tri-culture models to mimic the complex structure of the alveolar-capillary barrier.

Biomater Adv. 2023-11

[9]
Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models.

Int J Mol Sci. 2023-7-27

[10]
Development of a novel air-liquid interface airway tissue equivalent model for in vitro respiratory modeling studies.

Sci Rep. 2023-6-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索