文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

石墨烯纳米片增强人骨髓间充质干细胞的神经元分化。

Graphene nanoplatelets enhance neuronal differentiation of human bone marrow mesenchymal stem cells.

作者信息

Sevimli Gulsah, Kus Eda, Baran Gulin, Marashian Mahya, Tabatabaei Nasrollah, Mustafaoglu Nur

机构信息

Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.

Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Biol Res. 2025 May 30;58(1):32. doi: 10.1186/s40659-025-00616-3.


DOI:10.1186/s40659-025-00616-3
PMID:40448144
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12123866/
Abstract

Stem cell technology plays a key role in advancing the understanding of neurological treatments and developing disease models that mimic human conditions. Differentiation of human bone marrow mesenchymal stem cells (hBMSCs) into neurons shows promise for treating neurodegenerative diseases. However, improving the functionality of these nerve cells remains a challenge. Graphene nanoplatelets (GNPs), with their excellent conductivity and biocompatibility, can enhance neuronal differentiation. This study examines the effect of GNPs on hBMSC differentiation. Cells cultured with varying GNP concentrations were assessed at 4 and 7 days using RT-qPCR and immunocytochemistry for neuronal markers MAP2, Nestin, and Tuj1. Results show that GNPs enhance marker expression and promote differentiation. Lower GNP concentrations maintained viability, while higher concentrations were detrimental. Morphological changes and increased fluorescence were observed with a 0.4 µg/ml GNP coating. Calcium imaging with Fluo4-AM indicated increased neuronal activity, underscoring GNPs' role in neuronal maturation. These findings suggest GNPs can drive stem cell differentiation toward neurons, offering new therapeutic potential for neurodegenerative diseases.

摘要

干细胞技术在推进神经治疗的理解以及开发模拟人类疾病状况的疾病模型方面发挥着关键作用。人骨髓间充质干细胞(hBMSCs)向神经元的分化显示出治疗神经退行性疾病的潜力。然而,提高这些神经细胞的功能仍然是一项挑战。石墨烯纳米片(GNPs)具有出色的导电性和生物相容性,能够增强神经元分化。本研究考察了GNPs对hBMSC分化的影响。使用RT-qPCR和免疫细胞化学方法,针对神经元标志物MAP2、巢蛋白(Nestin)和Tuj1,在第4天和第7天对用不同浓度GNPs培养的细胞进行评估。结果表明,GNPs可增强标志物表达并促进分化。较低浓度的GNPs能维持细胞活力,而较高浓度则具有损害作用。在0.4μg/ml的GNPs包被下观察到形态学变化和荧光增强。用Fluo4-AM进行钙成像表明神经元活性增加,这突出了GNPs在神经元成熟过程中的作用。这些发现表明,GNPs可推动干细胞向神经元分化,为神经退行性疾病提供了新的治疗潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd4d/12123866/57f9eccf862c/40659_2025_616_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd4d/12123866/743a44a1aa2c/40659_2025_616_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd4d/12123866/03532440aa60/40659_2025_616_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd4d/12123866/57f9eccf862c/40659_2025_616_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd4d/12123866/743a44a1aa2c/40659_2025_616_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd4d/12123866/03532440aa60/40659_2025_616_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd4d/12123866/57f9eccf862c/40659_2025_616_Fig3_HTML.jpg

相似文献

[1]
Graphene nanoplatelets enhance neuronal differentiation of human bone marrow mesenchymal stem cells.

Biol Res. 2025-5-30

[2]
Bioinspired Nanofiber Scaffold for Differentiating Bone Marrow-Derived Neural Stem Cells to Oligodendrocyte-Like Cells: Design, Fabrication, and Characterization.

Int J Nanomedicine. 2020-6-2

[3]
Different forms of tenascin-C with tenascin-R regulate neural differentiation in bone marrow-derived human mesenchymal stem cells.

Tissue Eng Part A. 2014-7

[4]
[Knockdown of promotes osteogenic differentiation of human bone marrow mesenchymal stem cells].

Beijing Da Xue Xue Bao Yi Xue Ban. 2025-2-18

[5]
Human adipose-derived mesenchymal stem cells: a better cell source for nervous system regeneration.

Chin Med J (Engl). 2014

[6]
Development of Anisotropic Electrically Conductive GNP-Reinforced PCL-Collagen Scaffold for Enhanced Neurogenic Differentiation under Electrical Stimulation.

Chem Asian J. 2024-5-2

[7]
Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells.

Biomaterials. 2009-12-4

[8]
Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold.

Acta Biomater. 2012-8-16

[9]
Synergistic effect of recombinant human bone morphogenic protein-7 and osteogenic differentiation medium on human bone-marrow-derived mesenchymal stem cells in vitro.

Int Orthop. 2011-4-13

[10]
Concentration-dependent cellular behavior and osteogenic differentiation effect induced in bone marrow mesenchymal stem cells treated with magnetic graphene oxide.

J Biomed Mater Res A. 2020-1

本文引用的文献

[1]
Non-Cytotoxic Graphene Nanoplatelets Upregulate Cell Proliferation and Self-Renewal Genes of Mesenchymal Stem Cells.

Int J Mol Sci. 2024-9-11

[2]
Wrapping stem cells with wireless electrical nanopatches for traumatic brain injury therapy.

Nat Commun. 2024-8-22

[3]
Development of Anisotropic Electrically Conductive GNP-Reinforced PCL-Collagen Scaffold for Enhanced Neurogenic Differentiation under Electrical Stimulation.

Chem Asian J. 2024-5-2

[4]
Influence of Graphene-Based Nanocomposites in Neurogenesis and Neuritogenesis: A Brief Summary.

ACS Appl Bio Mater. 2024-2-19

[5]
Application of stem cells in regeneration medicine.

MedComm (2020). 2023-6-17

[6]
Microchip encapsulation and microRNA-7 overexpression of trabecular meshwork mesenchymal stem/stromal cells improve motor function after spinal cord injury.

J Biomed Mater Res A. 2023-9

[7]
A New Look at Animal Models of Neurological Disorders.

Neurotherapeutics. 2023-1

[8]
Advancing biomarker development for diagnostics and therapeutics using solid tumour cancer stem cell models.

Tumori. 2024-2

[9]
Stem Cell-Based Organoid Models of Neurodevelopmental Disorders.

Biol Psychiatry. 2023-4-1

[10]
3D printed reduced graphene oxide-GelMA hybrid hydrogel scaffolds for potential neuralized bone regeneration.

J Mater Chem B. 2023-2-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索