Suppr超能文献

未对接连接蛋白半通道电压门控的数学模型

Mathematical model of voltage gating of unapposed connexin hemichannels.

作者信息

Snipas Mindaugas, Kraujalis Tadas, Makniusevicius Orestas, Gudaitis Lukas, Kraujaliene Lina

机构信息

Intercellular Communication Laboratory, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania.

Department of Mathematical Modelling, Kaunas University of Technology, Kaunas, Lithuania.

出版信息

J Physiol. 2025 Aug;603(15):4307-4327. doi: 10.1113/JP288088. Epub 2025 May 31.

Abstract

Unapposed connexin (Cx) hemichannels serve as precursors to gap junction channels but also function independently, playing crucial roles in various physiological processes. Hemichannel gating is influenced by factors such as plasma membrane voltage and extracellular divalent ion concentrations. Excessive hemichannel opening can lead to significant leakage of ions and molecules, and mutations in genes encoding Cxs often result in aberrant gating, contributing to various pathologies. Therefore, evaluating and quantifying Cx hemichannel gating behaviours is important. To address this, we developed a mathematical/computational model describing the voltage-gating properties of Cx hemichannels. The proposed model incorporates two distinct gating mechanisms - fast and loop gating - known to regulate hemichannel closure. These gating transitions are represented within a four-state kinetic scheme, which also accounts for redistribution of voltage upon the closure of either mechanism. Using a sensitivity function matrix approach, we selected voltage protocols that provide sufficient information to constrain the proposed model. The model was then fitted to electrophysiological data recorded from Cx26 and Cx45 hemichannels. Fits to both training datasets and independent validation data indicate that the model can adequately describe the basic characteristics of Cx hemichannel currents. Further analysis using the proposed kinetic scheme provides insights into hemichannel gating behaviour, including the observed delay in current activation upon depolarization and potential discrepancies between gating kinetics of unapposed hemichannels and gap junction channels. Thus, the proposed model can serve as a valuable tool for comparing voltage-gating properties across Cx isoforms and mutants and offers insights into Cx hemichannel gating behaviours. KEY POINTS: Gating of unapposed connexin (Cx) hemichannels plays a crucial role in various physiological processes, whereas mutations in Cx genes that cause aberrant gating are linked to various pathologies. To quantify the voltage-gating properties of Cx hemichannels, we present a novel mathematical/computational model that comprises two established gating mechanisms: fast and loop gating. The validity of the proposed model is demonstrated through fits to electrophysiological data from cells expressing different Cx isoforms, Cx26 and Cx45. The proposed model can serve as a useful tool for comparing the voltage-gating properties across Cx isoforms and mutants, and offers insights into the physiologically relevant mechanistic behaviours of Cx hemichannels.

摘要

未对接的连接蛋白(Cx)半通道是间隙连接通道的前体,但也能独立发挥作用,在各种生理过程中起着关键作用。半通道门控受质膜电压和细胞外二价离子浓度等因素影响。半通道过度开放会导致离子和分子的大量泄漏,编码Cx的基因突变通常会导致异常门控,进而引发各种病理状况。因此,评估和量化Cx半通道的门控行为很重要。为解决这一问题,我们开发了一个描述Cx半通道电压门控特性的数学/计算模型。该模型纳入了两种不同的门控机制——快速门控和环门控,已知这两种机制可调节半通道关闭。这些门控转变在一个四态动力学方案中得以体现,该方案还考虑了任一机制关闭时电压的重新分布。我们使用灵敏度函数矩阵方法,选择了能提供足够信息以约束该模型的电压协议。然后将该模型拟合到从Cx26和Cx45半通道记录的电生理数据。对训练数据集和独立验证数据的拟合结果均表明,该模型能够充分描述Cx半通道电流的基本特征。使用所提出的动力学方案进行的进一步分析,为半通道门控行为提供了深入见解,包括去极化时观察到的电流激活延迟以及未对接半通道和间隙连接通道门控动力学之间可能存在的差异。因此,所提出的模型可作为一个有价值的工具,用于比较不同Cx亚型和突变体的电压门控特性,并深入了解Cx半通道的门控行为。关键点:未对接的连接蛋白(Cx)半通道的门控在各种生理过程中起着关键作用,而导致异常门控的Cx基因突变与各种病理状况相关。为了量化Cx半通道的电压门控特性,我们提出了一种新颖的数学/计算模型,该模型包含两种已确立的门控机制:快速门控和环门控。通过对表达不同Cx亚型(Cx26和Cx45)的细胞的电生理数据进行拟合,证明了所提出模型的有效性。所提出的模型可作为一个有用的工具,用于比较不同Cx亚型和突变体的电压门控特性,并深入了解Cx半通道的生理相关机制行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验