Suppr超能文献

使用基于交叉验证的更新策略进行自适应运动单元分解。

Adaptive motor unit decomposition using a cross-validation-based update policy.

作者信息

Ma Tianze, Hu Xiaogang

机构信息

Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, USA.

Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, USA; Department of Kinesiology, Pennsylvania State University, University Park, PA, USA; Department of Physical Medicine & Rehabilitation, Pennsylvania State Hershey College of Medicine, PA, USA; Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA; Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA.

出版信息

Comput Biol Med. 2025 Jul;193:110479. doi: 10.1016/j.compbiomed.2025.110479. Epub 2025 May 30.

Abstract

Extraction of motor unit (MU) information from electromyographic (EMG) signals has shown promise in neurophysiology and rehabilitation. However, the low accuracy of MU spike train firing information remains a major issue when the signals have stochastic variations. The objective of this study was to develop a new adaptive MU spike train decomposition algorithm with a deterministic pool of MU spike trains update policy. We first identified common MU spike trains, which were proven to be accurate, from two groups of concurrently recorded EMG signals. We then updated the common pool of MU spike trains with a flag policy, when we periodically updated the MU spike train separation matrix, which could add newly identified MU spike trains and remove inaccurate MU spike trains from the MU spike train pool. The flags of individual MU spike trains captured the consistency of MU active state and the likelihood of being extracted by the decomposition algorithm repetitively. We systematically evaluated the new algorithm on simulated datasets with 1-h pseudorandom activation levels under various conditions, including different degrees of amplitude drift of action potentials, different rates of MU rotation, and different levels of signal-to-noise ratios. The results demonstrated that our adaptive algorithm could identify and retain MU spike trains with 28 % higher accuracy compared with the conventional decomposition method. We also found consistently high decomposition accuracy across various signal conditions. These findings highlight the robustness of our decomposition approach. The outcomes have the potential to enhance neural decoding performance and could be applied to different scenarios, such as evaluating neurophysiological mechanisms during sustained muscle activations and assessing motor recovery during rehabilitation.

摘要

从肌电图(EMG)信号中提取运动单位(MU)信息在神经生理学和康复领域已展现出前景。然而,当信号存在随机变化时,MU 放电序列发放信息的低准确性仍是一个主要问题。本研究的目的是开发一种新的自适应 MU 放电序列分解算法,该算法具有确定性的 MU 放电序列更新策略。我们首先从两组同步记录的 EMG 信号中识别出被证明是准确的共同 MU 放电序列。然后,当我们定期更新 MU 放电序列分离矩阵时,采用标记策略更新共同的 MU 放电序列池,这可以添加新识别出的 MU 放电序列,并从 MU 放电序列池中移除不准确的 MU 放电序列。单个 MU 放电序列的标记捕捉了 MU 激活状态的一致性以及被分解算法重复提取的可能性。我们在各种条件下,包括不同程度的动作电位幅度漂移、不同的 MU 轮换率和不同水平的信噪比,对具有 1 小时伪随机激活水平的模拟数据集系统地评估了新算法。结果表明,与传统分解方法相比,我们的自适应算法能够以高 28%的准确率识别并保留 MU 放电序列。我们还发现在各种信号条件下分解准确率始终很高。这些发现突出了我们分解方法的稳健性。这些结果有可能提高神经解码性能,并可应用于不同场景,如评估持续肌肉激活期间的神经生理机制以及评估康复期间的运动恢复情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验