Suppr超能文献

解决辐照功率对光热CO加氢影响的难题。

Solving the Conundrum of the Influence of Irradiation Power on Photothermal CO Hydrogenation.

作者信息

Szalad Horatiu, Peng Yong, Gosch Jonas Werner, Baldi Andrea, Askes Sven H C, Albero Josep, García Hermenegildo

机构信息

Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de Valènica, Avda. De los Naranjos s/n, 46022 Valencia, Spain.

Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands.

出版信息

ACS Catal. 2025 Feb 19;15(5):3836-3845. doi: 10.1021/acscatal.5c00247. eCollection 2025 Mar 7.

Abstract

Solar photocatalysis appears as a viable approach for the production of value-added chemicals from CO. However, up to now, there is no information on the influence of the light intensity on the product distribution of CO hydrogenation and the modeling of the actual local temperature at the catalytic sites for typical nanoparticulate photocatalysts. Herein, it is shown that for a photothermal catalyst containing a high density of homogeneously distributed Ru nanoparticles, the collective heating prevails, resulting in a homogeneous temperature distribution in the material that should be relatively close to that of the support and that can be measured macroscopically. Moreover, light intensity has a clear influence on product distribution due to the differences in the local temperature, and therefore, attention should be paid to stable operating conditions, temperature, and CO conversion that can result in remarkable differences in product selectivity for the same catalyst as a function of light intensity.

摘要

太阳能光催化似乎是一种从一氧化碳生产高附加值化学品的可行方法。然而,到目前为止,对于典型纳米颗粒光催化剂,尚无关于光强度对一氧化碳加氢产物分布的影响以及催化位点实际局部温度建模的相关信息。在此表明,对于含有高密度均匀分布钌纳米颗粒的光热催化剂,集体加热占主导,导致材料中温度分布均匀,该温度应相对接近载体温度且可宏观测量。此外,由于局部温度差异,光强度对产物分布有明显影响,因此,对于同一催化剂,应注意稳定的操作条件、温度和一氧化碳转化率,这些因素会因光强度不同而导致产物选择性出现显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/12123606/f4d953547a22/cs5c00247_0006.jpg

相似文献

1
Solving the Conundrum of the Influence of Irradiation Power on Photothermal CO Hydrogenation.
ACS Catal. 2025 Feb 19;15(5):3836-3845. doi: 10.1021/acscatal.5c00247. eCollection 2025 Mar 7.
3
Efficient Thermal Management with Selective Metamaterial Absorber for Boosting Photothermal CO Hydrogenation under Sunlight.
Adv Mater. 2024 May;36(21):e2311957. doi: 10.1002/adma.202311957. Epub 2024 Feb 16.
4
Supra-Photothermal CO Methanation over Greenhouse-Like Plasmonic Superstructures of Ultrasmall Cobalt Nanoparticles.
Adv Mater. 2024 Mar;36(9):e2308859. doi: 10.1002/adma.202308859. Epub 2023 Dec 14.
5
MOF-Templated Preparation of Highly Dispersed Co/AlO Composite as the Photothermal Catalyst with High Solar-to-Fuel Efficiency for CO Methanation.
ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39304-39317. doi: 10.1021/acsami.0c11576. Epub 2020 Aug 18.
6
TiO-Phase-Mediated Size Effect of Rh Nanoparticles on Photothermal Catalytic CO Hydrogenation.
Chemistry. 2025 Feb 3;31(7):e202403786. doi: 10.1002/chem.202403786. Epub 2024 Dec 5.
7
Plasmonic Cu-supported amorphous RuP for efficient photothermal CO hydrogenation to CO.
RSC Adv. 2025 Jan 20;15(3):1658-1664. doi: 10.1039/d4ra07361d. eCollection 2025 Jan 16.
8
Niobium and Titanium Carbides (MXenes) as Superior Photothermal Supports for CO Photocatalysis.
ACS Nano. 2021 Mar 23;15(3):5696-5705. doi: 10.1021/acsnano.1c00990. Epub 2021 Feb 24.
9
Near-Unity Photothermal CO Hydrogenation to Methanol Based on a Molecule/Nanocarbon Hybrid Catalyst.
Angew Chem Int Ed Engl. 2025 Jan 21;64(4):e202416376. doi: 10.1002/anie.202416376. Epub 2024 Nov 21.
10
Solar-Driven CO Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure.
Angew Chem Int Ed Engl. 2023 Jul 24;62(30):e202305251. doi: 10.1002/anie.202305251. Epub 2023 Jun 14.

本文引用的文献

1
MoTiC MXene-Supported Ru Clusters for Efficient Photothermal Reverse Water-Gas Shift.
ACS Nano. 2022 Dec 30;17(2):1550-9. doi: 10.1021/acsnano.2c10707.
2
Selective Hydrodeoxygenation of Lignin-Derived Phenols to Aromatics Catalyzed by NbO-Supported Iridium.
ACS Omega. 2022 Aug 23;7(35):31561-31566. doi: 10.1021/acsomega.2c04314. eCollection 2022 Sep 6.
3
Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO catalysis.
Nat Commun. 2022 Sep 9;13(1):5305. doi: 10.1038/s41467-022-33029-x.
4
Photothermal nonlinearity in plasmon-assisted photocatalysis.
Nanoscale. 2022 Mar 31;14(13):5022-5032. doi: 10.1039/d1nr07822d.
5
Fe clusters embedded on N-doped graphene as a photothermal catalyst for selective CO hydrogenation.
Chem Commun (Camb). 2021 Sep 30;57(78):10075-10078. doi: 10.1039/d1cc03524j.
6
Optimizing Active Sites for High CO Selectivity during CO Hydrogenation over Supported Nickel Catalysts.
J Am Chem Soc. 2021 Mar 24;143(11):4268-4280. doi: 10.1021/jacs.0c12689. Epub 2021 Mar 4.
7
Fundamentals and applications of photo-thermal catalysis.
Chem Soc Rev. 2021 Feb 15;50(3):2173-2210. doi: 10.1039/d0cs00357c.
8
Black indium oxide a photothermal CO hydrogenation catalyst.
Nat Commun. 2020 May 15;11(1):2432. doi: 10.1038/s41467-020-16336-z.
9
The physical chemistry and materials science behind sinter-resistant catalysts.
Chem Soc Rev. 2018 Jun 18;47(12):4314-4331. doi: 10.1039/c7cs00650k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验