Su Lin, Rodríguez-Jiménez Santiago, Short Marion I M, Reisner Erwin
Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge UK
Chem Sci. 2025 May 12. doi: 10.1039/d5sc00764j.
The solar-driven valorization of CO to fuels and chemicals provides an exciting opportunity to develop a circular chemical industry, but the controlled production of multicarbon organics remains a major challenge. Here, we present an abiotic-biotic domino strategy that integrates a photocatalytic CO-to-syngas conversion system with evolved syngas-fermenting bacteria to enable the upcycling of CO into valuable C products, including acetate and ethanol. To optimize microbial syngas fermentation through an accessible and chemist-friendly platform, we employ adaptive laboratory evolution (ALE) of (). The adapted strain, , exhibits a 2.5-fold increase in growth rate and a 120-fold enhancement in C production compared to the wild type ( ). Isotopic labeling confirmed 's high conversion efficiency, yielding 6 : 1 and 9 : 1 ratios of C : C in acetate and ethanol, respectively. Whole genome sequencing revealed mutations in , offering initial clues to its enhanced metabolism. A scaled-up semiconductor-molecule hybrid photocatalyst, TiO|phosphonated Co(terpyridine), was employed to generate sufficient syngas (CO/H ratio: ∼30 : 70 with 1.3 mmol of CO after 6 days) for to demonstrate photocatalytic CO → syngas → C conversion (yielding 0.46 ± 0.07 mM, or 3.2 μmol, of acetate). This study offers a streamlined approach to improving syngas fermentation in , insights into microbial adaptability, and an ALE-guided pathway for solar-powered CO upcycling using an inorganic-microbial domino strategy.
太阳能驱动的将一氧化碳转化为燃料和化学品为发展循环化学工业提供了一个令人兴奋的机会,但多碳有机物的可控生产仍然是一个重大挑战。在此,我们提出了一种非生物-生物多米诺策略,该策略将光催化一氧化碳到合成气的转化系统与进化的合成气发酵细菌相结合,以实现将一氧化碳升级循环为有价值的碳产品,包括醋酸盐和乙醇。为了通过一个易于使用且对化学家友好的平台优化微生物合成气发酵,我们采用了()的适应性实验室进化(ALE)。与野生型()相比,适应性菌株()的生长速率提高了2.5倍,碳产量提高了120倍。同位素标记证实了()的高转化效率,在醋酸盐和乙醇中分别产生了6:1和9:1的碳13:碳12比率。全基因组测序揭示了()中的突变,为其增强的代谢提供了初步线索。使用一种放大的半导体-分子混合光催化剂TiO|膦酸化钴(三联吡啶)来产生足够的合成气(一氧化碳/氢气比率:约30:70,6天后有1.3毫摩尔一氧化碳),以供()展示光催化一氧化碳→合成气→碳转化(产生0.46±0.07毫摩尔,即3.2微摩尔的醋酸盐)。这项研究提供了一种简化的方法来改善()中的合成气发酵,深入了解微生物适应性,以及一条使用无机-微生物多米诺策略进行太阳能驱动的一氧化碳升级循环的ALE引导途径。