Matysik Julia, Długosz Olga, Banach Marcin
CUT Doctoral School, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska St. 24, 31-155 Cracow, Poland.
Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska St. 24, 31-155 Cracow, Poland.
ACS Omega. 2025 May 14;10(20):20095-20105. doi: 10.1021/acsomega.4c08949. eCollection 2025 May 27.
The study analyses nanotechnology advances in the synthesis of catalytic nanozymes that mimic enzymatic properties but are also inorganic nanomaterials. It compares Zn-Mn-Cu multioxide and Mn-Cu multioxide nanomaterials in terms of the role of nanozymes and photocatalysts in the decomposition of trypan blue dye. The study showed that Zn-Mn-Cu multioxide nanoxide has activity as a peroxidase-like nanozyme (100 mUnit/mL) and achieves 75% dye degradation as a photocatalyst under UV light. At the same time, Mn-Cu multioxide shows enhanced photocatalysis under visible light (45% degradation), consistent with its biocatalytic-like hydrolysis mechanism. In addition, both materials showed biocatalytic-like activity in the degradation of trypan blue dye (25%), without an additional light source. Further investigation of these dual nanozyme activities may reveal novel solutions for environmental photocatalysis.
该研究分析了催化纳米酶合成中的纳米技术进展,这些催化纳米酶模拟酶的特性,但同时也是无机纳米材料。它比较了锌-锰-铜多氧化物和锰-铜多氧化物纳米材料在纳米酶和光催化剂对锥虫蓝染料分解作用方面的差异。研究表明,锌-锰-铜多氧化物纳米氧化物具有类似过氧化物酶的纳米酶活性(100毫单位/毫升),并在紫外光下作为光催化剂实现了75%的染料降解。同时,锰-铜多氧化物在可见光下显示出增强的光催化作用(45%降解),这与其类似生物催化的水解机制一致。此外,两种材料在没有额外光源的情况下,对锥虫蓝染料的降解均表现出类似生物催化的活性(25%)。对这些双重纳米酶活性的进一步研究可能会揭示环境光催化的新解决方案。