Zhang Bichen, Johnson Morgan M, Yuan Timothy, Nguyen Tammy-Nhu, Okada Junichi, Yang Fajun, Xiaoli Alus M, Melikian Liana H, Xu Songran, Dadpey Benyamin, Pessin Jeffrey E, Saltiel Alan R
Department of Medicine, University of California, San Diego, San Diego, California, USA.
Department of Medicine and.
J Clin Invest. 2025 Jun 2;135(11). doi: 10.1172/JCI188363.
Glycogenolysis and gluconeogenesis ensure sufficient hepatic glucose production during energy shortages. Here, we report that hepatic glycogen levels control the phosphorylation of a transcriptional coactivator to determine the amplitude of gluconeogenesis. Decreased liver glycogen during fasting promotes gluconeogenic gene expression, while feeding-induced glycogen accumulation suppresses it. Liver-specific deletion of the glycogen scaffolding protein, protein targeting to glycogen (PTG), reduces glycogen levels, increases the expression of gluconeogenic genes, and promotes glucose production in primary hepatocytes. In contrast, liver glycogen phosphorylase (PYGL) knockdown or inhibition increases glycogen levels and represses gluconeogenic gene expression. These changes in hepatic glycogen levels are sensed by AMP-activated protein kinase (AMPK). AMPK activity is increased when glycogen levels decline, resulting in the phosphorylation and stabilization of CREB-regulated transcriptional coactivator 2 (CRTC2), which is crucial for the full activation of the cAMP-responsive transcriptional factor CREB. High glycogen allosterically inhibits AMPK, leading to CRTC2 degradation and reduced CREB transcriptional activity. Hepatocytes with low glycogen levels or high AMPK activity show higher CRTC2 protein levels, priming the cell for gluconeogenesis through transcriptional regulation. Thus, glycogen plays a regulatory role in controlling hepatic glucose metabolism through the glycogen/AMPK/CRTC2 signaling axis, safeguarding efficient glucose output during fasting and suppressing it during feeding.
糖原分解和糖异生作用确保了在能量短缺期间肝脏有足够的葡萄糖生成。在此,我们报告肝脏糖原水平控制一种转录共激活因子的磷酸化,以确定糖异生作用的幅度。禁食期间肝脏糖原水平降低会促进糖异生基因的表达,而进食诱导的糖原积累则会抑制它。肝脏特异性缺失糖原支架蛋白——糖原靶向蛋白(PTG),会降低糖原水平,增加糖异生基因的表达,并促进原代肝细胞中的葡萄糖生成。相反,肝脏糖原磷酸化酶(PYGL)的敲低或抑制会增加糖原水平,并抑制糖异生基因的表达。肝脏糖原水平的这些变化由AMP激活的蛋白激酶(AMPK)感知。当糖原水平下降时,AMPK活性增加,导致CREB调节的转录共激活因子2(CRTC2)磷酸化并稳定,这对于cAMP反应性转录因子CREB的完全激活至关重要。高糖原水平变构抑制AMPK,导致CRTC2降解并降低CREB转录活性。糖原水平低或AMPK活性高的肝细胞显示出更高的CRTC2蛋白水平,通过转录调控使细胞为糖异生做好准备。因此,糖原通过糖原/AMPK/CRTC2信号轴在控制肝脏葡萄糖代谢中发挥调节作用,在禁食期间保障有效的葡萄糖输出,在进食期间抑制葡萄糖输出。