Bardagot Olivier, Durand Pablo, Guchait Shubhradip, Wu Han-Yan, Heinzen Isabelle, Errafi Wissal, Bouylout Victor, Pistillo Alessandra, Yang Chi-Yuan, Rebetez Gonzague, Cavassin Priscila, Jismy Badr, Réhault Julien, Fabiano Simone, Brinkmann Martin, Leclerc Nicolas, Banerji Natalie
Department of Chemistry, Biochemistry and Pharmaceutical Sciences (DCBP), University of Bern, Freiestrasse 3, Bern, 3012, Switzerland.
Institute of Chemistry and Processes for Energy Environment and Health (ICPEES), University of Strasbourg, CNRS, 25 rue Becquerel, Strasbourg, 67087, France.
Adv Mater. 2025 Aug;37(32):e2420323. doi: 10.1002/adma.202420323. Epub 2025 Jun 2.
Organic electrochemical transistors (OECTs) are central to the development of highly sensitive (bio)sensors, energy-efficient neuromorphic devices, and high-precision electrophysiological monitoring systems. With growing interest in these strategic electronic devices, a novel PBTTT polymer bearing single-ether side chains (PBTTT-O) in OECTs is investigated. Pristine isotropic non-aligned OECT performance matches state-of-the-art transconductance, highlighting the potential of single ethers for designing high-performance organic mixed ionic-electronic conductors (OMIECs). Moreover, a 13× enhancement of current output is achieved by anisotropic polymer chain alignment of PBTTT-O, opening doors to unprecedented device sensitivity. Compared to pristine ones, aligned OECTs afford a 6× increase in the normalized transconductance (gL/Wd), reaching an unprecedented 2 580 S cm. Such improvement is mainly due to a gain in carrier mobility µ, as evidenced by four distinct methods. In addition, aligned OECTs exhibit faster doping front propagation, ON switching, and OFF switching compared to pristine ones. This study hence reports a versatile and easily transferable approach to concomitantly boost signal amplification and accelerate the response time of bioelectronic devices.
有机电化学晶体管(OECTs)对于高灵敏度(生物)传感器、节能神经形态器件以及高精度电生理监测系统的发展至关重要。随着对这些战略性电子器件的兴趣日益浓厚,人们对一种在OECTs中带有单醚侧链的新型PBTTT聚合物(PBTTT-O)展开了研究。原始的各向同性非取向OECT性能与最先进的跨导性能相当,突出了单醚在设计高性能有机混合离子-电子导体(OMIECs)方面的潜力。此外,通过PBTTT-O的各向异性聚合物链排列,实现了电流输出增强13倍,为前所未有的器件灵敏度打开了大门。与原始器件相比,取向OECTs的归一化跨导(gL/Wd)提高了6倍,达到了前所未有的2580 S/cm。这种改进主要归因于载流子迁移率μ的增加,这由四种不同方法得到证明。此外,与原始器件相比,取向OECTs表现出更快的掺杂前沿传播、导通切换和关断切换。因此,本研究报告了一种通用且易于转移的方法,可同时提高信号放大能力并加速生物电子器件的响应时间。