School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China.
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA.
Nature. 2023 Jan;613(7944):496-502. doi: 10.1038/s41586-022-05592-2. Epub 2023 Jan 18.
Organic electrochemical transistors (OECTs) and OECT-based circuitry offer great potential in bioelectronics, wearable electronics and artificial neuromorphic electronics because of their exceptionally low driving voltages (<1 V), low power consumption (<1 µW), high transconductances (>10 mS) and biocompatibility. However, the successful realization of critical complementary logic OECTs is currently limited by temporal and/or operational instability, slow redox processes and/or switching, incompatibility with high-density monolithic integration and inferior n-type OECT performance. Here we demonstrate p- and n-type vertical OECTs with balanced and ultra-high performance by blending redox-active semiconducting polymers with a redox-inactive photocurable and/or photopatternable polymer to form an ion-permeable semiconducting channel, implemented in a simple, scalable vertical architecture that has a dense, impermeable top contact. Footprint current densities exceeding 1 kA cm at less than ±0.7 V, transconductances of 0.2-0.4 S, short transient times of less than 1 ms and ultra-stable switching (>50,000 cycles) are achieved in, to our knowledge, the first vertically stacked complementary vertical OECT logic circuits. This architecture opens many possibilities for fundamental studies of organic semiconductor redox chemistry and physics in nanoscopically confined spaces, without macroscopic electrolyte contact, as well as wearable and implantable device applications.
有机电化学晶体管(OECT)和基于 OECT 的电路由于其极低的驱动电压(<1V)、低功耗(<1μW)、高跨导(>10mS)和生物相容性,在生物电子学、可穿戴电子学和人工神经形态电子学方面具有巨大的潜力。然而,关键互补逻辑 OECT 的成功实现目前受到时间和/或操作不稳定性、缓慢的氧化还原过程和/或开关、与高密度单片集成不兼容以及较差的 n 型 OECT 性能的限制。在这里,我们通过将氧化还原活性半导体聚合物与光可固化和/或光图案化的非氧化还原聚合物混合,形成离子可渗透的半导体通道,展示了具有平衡和超高性能的 p 型和 n 型垂直 OECT,这种方法实现了简单、可扩展的垂直结构,具有致密、不可渗透的顶部接触。在我们所知的第一个垂直堆叠互补垂直 OECT 逻辑电路中,实现了超过 1kA/cm 的足迹电流密度,在小于±0.7V 的情况下,跨导为 0.2-0.4S,瞬态时间小于 1ms,超稳定开关(>50,000 次循环)。这种架构为在纳米尺度受限空间中进行有机半导体氧化还原化学和物理的基础研究提供了许多可能性,而无需宏观电解质接触,同时也为可穿戴和植入式设备应用提供了可能性。