Muley Vijaykumar Yogesh
Université Paris Cité, Inserm, NeuroDiderot, Paris, France.
Independent Researcher, Hingoli, India.
Methods Mol Biol. 2025;2927:75-98. doi: 10.1007/978-1-0716-4546-8_4.
Understanding gene function and pathways is a key goal in genomics. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) provide frameworks to annotate genes based on their roles, cellular locations, and functions. These classifications help researchers analyze complex systems, identify drug targets, and investigate gene-disease connections. GO and KEGG annotations are central to enrichment analysis, which tests for overrepresented pathways in gene sets, often comparing disease to healthy states. Enrichment analysis methods include overrepresentation analysis (ORA) for gene lists and gene set enrichment analysis (GSEA) for ranked gene lists. In R/Bioconductor, tools like clusterProfiler, topGO, and DOSE make this process accessible. Each tool offers unique features, supporting insights into pathways, regulatory functions, and disease mechanisms. This chapter provides step-by-step instructions for using these tools to analyze differentially expressed genes in SARS-CoV-2-infected patients compared to healthy controls. By following this protocol, researchers can efficiently interpret gene set enrichment results and export them in publication-ready tables and figures. This analysis reveals valuable biological insights, facilitating a deeper understanding of gene regulation and pathway interactions in disease contexts.
了解基因功能和通路是基因组学的关键目标。基因本体论(GO)和京都基因与基因组百科全书(KEGG)提供了基于基因的作用、细胞位置和功能对基因进行注释的框架。这些分类有助于研究人员分析复杂系统、识别药物靶点以及研究基因与疾病的联系。GO和KEGG注释对于富集分析至关重要,富集分析用于测试基因集中过度富集的通路,通常是将疾病状态与健康状态进行比较。富集分析方法包括针对基因列表的过度富集分析(ORA)和针对排名基因列表的基因集富集分析(GSEA)。在R/Bioconductor中,clusterProfiler、topGO和DOSE等工具使得这一过程变得可行。每个工具都具有独特的功能,有助于深入了解通路、调控功能和疾病机制。本章提供了使用这些工具分析新冠病毒感染患者与健康对照相比差异表达基因的分步说明。按照此方案,研究人员可以有效地解释基因集富集结果,并以适合发表的表格和图表形式导出结果。该分析揭示了有价值的生物学见解,有助于更深入地了解疾病背景下的基因调控和通路相互作用。