Suppr超能文献

TOGS:用于实时4D DSA渲染的具有时间不透明度偏移的高斯点渲染

TOGS: Gaussian Splatting With Temporal Opacity Offset for Real-Time 4D DSA Rendering.

作者信息

Zhang Shuai, Zhao Huangxuan, Zhou Zhenghong, Wu Guanjun, Zheng Chuansheng, Wang Xinggang, Liu Wenyu

出版信息

IEEE J Biomed Health Inform. 2025 Sep;29(9):6793-6805. doi: 10.1109/JBHI.2025.3575613.

Abstract

Four-dimensional Digital Subtraction Angiography (4D DSA) is a medical imaging technique that provides a series of 2D images captured at different stages and angles during the process of contrast agent filling blood vessels. It plays a significant role in the diagnosis of cerebrovascular diseases. Improving the rendering quality and speed under sparse sampling is important for observing the status and location of lesions. The current methods exhibit inadequate rendering quality in sparse views and suffer from slow rendering speed. To overcome these limitations, we propose TOGS, a Gaussian splatting method with opacity offset over time, which can effectively improve the rendering quality and speed of 4D DSA. We introduce an opacity offset table for each Gaussian to model the opacity offsets of the Gaussian, using these opacity-varying Gaussians to model the temporal variations in the radiance of the contrast agent. By interpolating the opacity offset table, the opacity variation of the Gaussian at different time points can be determined. This enables us to render the 2D DSA image at that specific moment. Additionally, we introduced a Smooth loss term in the loss function to mitigate overfitting issues that may arise in the model when dealing with sparse view scenarios. During the training phase, we randomly prune Gaussians, thereby reducing the storage overhead of the model. The experimental results demonstrate that compared to previous methods, this model achieves state-of-the-art render quality under the same number of training views. Additionally, it enables real-time rendering while maintaining low storage overhead.

摘要

四维数字减影血管造影(4D DSA)是一种医学成像技术,它提供了在造影剂填充血管过程中不同阶段和角度拍摄的一系列二维图像。它在脑血管疾病的诊断中起着重要作用。在稀疏采样下提高渲染质量和速度对于观察病变的状态和位置很重要。当前的方法在稀疏视图下渲染质量不足,并且渲染速度较慢。为了克服这些限制,我们提出了TOGS,一种随时间具有不透明度偏移的高斯点渲染方法,它可以有效地提高4D DSA的渲染质量和速度。我们为每个高斯引入一个不透明度偏移表来模拟高斯的不透明度偏移,使用这些不透明度变化的高斯来模拟造影剂辐射的时间变化。通过对不透明度偏移表进行插值,可以确定高斯在不同时间点的不透明度变化。这使我们能够渲染特定时刻的二维DSA图像。此外,我们在损失函数中引入了一个平滑损失项,以减轻模型在处理稀疏视图场景时可能出现的过拟合问题。在训练阶段,我们随机修剪高斯,从而减少模型的存储开销。实验结果表明,与以前的方法相比,该模型在相同数量的训练视图下实现了最先进的渲染质量。此外,它能够在保持低存储开销的同时进行实时渲染。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验