Quinn Desmond Joseph, Paul Diptabrata, Cichos Frank
Molecular Nanophotonics Group, Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany.
ACS Nano. 2025 Jun 17;19(23):21820-21829. doi: 10.1021/acsnano.5c05766. Epub 2025 Jun 2.
Controlled assembly of functional structures that can be dynamically reconfigured remains a significant challenge in materials science. Here, we demonstrate a nonequilibrium assembly approach where colloidal particles organize into three-dimensional crystalline structures through the interplay of three temperature-induced phenomena: thermophoresis, thermoosmosis, and depletion forces from polyethylene glycol molecules. Using precisely controlled laser-induced temperature gradients, we assemble highly ordered colloidal crystals within minutes, significantly faster than conventional equilibrium approaches. These structures exhibit tunable photonic stopbands that can be modulated by adjusting the laser power, causing structural transitions between crystalline and toroidal configurations. By quantifying the underlying particle fluxes and growth dynamics, we develop a model that accurately predicts assembly rates across different conditions. Our thermofluidic assembly approach offers a versatile platform for creating reconfigurable functional materials with dynamically tunable properties, circumventing limitations of traditional equilibrium assembly methods.
在材料科学中,能够动态重新配置的功能结构的可控组装仍然是一个重大挑战。在此,我们展示了一种非平衡组装方法,其中胶体颗粒通过三种温度诱导现象的相互作用组织成三维晶体结构:热泳、热渗透以及聚乙二醇分子产生的耗尽力。利用精确控制的激光诱导温度梯度,我们在几分钟内就能组装出高度有序的胶体晶体,这比传统的平衡方法要快得多。这些结构展现出可调谐的光子禁带,可通过调节激光功率进行调制,从而导致晶体结构与环形结构之间的转变。通过量化潜在的粒子通量和生长动力学,我们开发了一个模型,该模型能够准确预测不同条件下的组装速率。我们的热流体组装方法为创建具有动态可调特性的可重构功能材料提供了一个通用平台,克服了传统平衡组装方法的局限性。