Zhao Wuyu, Song Song, Ding Maofeng, Luo Wei, Li Landong, Li Xingang
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering and Low-Carbon Technology, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China.
Zhejiang Institute of Tianjin University, Tianjin University, Zhejiang, 312300, China.
Angew Chem Int Ed Engl. 2025 Aug 4;64(32):e202507984. doi: 10.1002/anie.202507984. Epub 2025 Jun 8.
The one-step conversion of biomass-derived furfural (FUR) to tetrahydrofuran (THF) via combining decarbonylation and hydrogenation offers a sustainable alternative to the industrial Reppe process, while the selectivity control remains a significant challenge. Herein, we identify carbon monoxide (CO), in situ generated during FUR decarbonylation, as a major hindrance, significantly inhibiting subsequent furan hydrogenation. To overcome this limitation, a zeolite-encapsulated PtPd single-atom alloy (SAA) catalyst, namely PtPd@S-1, is designed, which effectively mitigates CO poisoning and enables efficient FUR conversion to THF, achieving 100% FUR conversion and >93% THF selectivity with good long-term stability (∼100 h)-among the highest values reported to date. Mechanistic studies reveal that electron-deficient Pd species adjacent to single Pt atoms in PtPd@S-1 significantly enhance H activation and furan adsorption, enabling efficient hydrogenation at both the C and C positions of furan despite CO poisoning. Furthermore, the one-step process is economically viable with a minimum selling price (MSP) of USD 1701 per tonne of THF, and a life cycle assessment shows a CO equivalent emission of 1.29 tonnes per tonne of THF-less than 25% of that of the traditional Reppe process. This work represents a transformative advancement in sustainable THF production, with the potential to revolutionize industrial THF production.
通过脱羰和氢化反应将生物质衍生的糠醛(FUR)一步转化为四氢呋喃(THF),为工业Reppe法提供了一种可持续的替代方法,然而选择性控制仍然是一个重大挑战。在此,我们确定在FUR脱羰过程中原位生成的一氧化碳(CO)是主要障碍,它显著抑制了随后的呋喃氢化反应。为克服这一限制,设计了一种沸石封装的PtPd单原子合金(SAA)催化剂,即PtPd@S-1,它能有效减轻CO中毒,并实现FUR向THF的高效转化,FUR转化率达到100%,THF选择性>93%,且具有良好的长期稳定性(约100小时),这是迄今为止报道的最高值之一。机理研究表明,PtPd@S-1中与单个Pt原子相邻的缺电子Pd物种显著增强了H活化和呋喃吸附,尽管存在CO中毒,仍能在呋喃的C和C'位置实现高效氢化。此外,该一步法在经济上可行,四氢呋喃的最低销售价格(MSP)为每吨1701美元,生命周期评估表明,每吨四氢呋喃的CO当量排放量为1.29吨,不到传统Reppe法的25%。这项工作代表了可持续四氢呋喃生产的变革性进展,有可能彻底改变工业四氢呋喃的生产方式。