Suppr超能文献

二甲双胍可保护人胰岛素不发生果糖基化:一项体外生化研究。

Metformin Protects Human Insulin from Fructosylation: An in Vitro Biochemical Study.

作者信息

Raza Ali, Habib Safia, Noor Saba, Ahmad Ayaz, Warsi Mohd Sharib, - Moinuddin, Ali Asif, Mahmood Riaz

机构信息

Department of Biochemistry, Jawaharlal Nehru Medical College Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.

Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.

出版信息

Curr Med Chem. 2025 Jun 2. doi: 10.2174/0109298673397564250529061139.

Abstract

INTRODUCTION

Fructose, like other sugars and sugar metabolites, is capable of glycating protein. Insulin's fructosylation leads to the generation of Advanced Glycation End Products (AGEs). Reducing sugars reaction with proteins to form Schiff's bases, which are characterized by the presence of an imine (C=N) bond. The Schiff bases then undergo irreversible rearrangements, followed by the production of much more stable compounds called Amadori products. These Amadori products can further undergo oxidation, dehydration, cyclization, and condensation to form highly toxic advanced glycation end-products (AGEs). These processes are accompanied by oxidative stress, secondary structural perturbations, and altered morphology, progressing toward amyloidogenesis. Metformin, a biguanide, is the most common drug used to treat type 2 Diabetes Mellitus (T2DM).

AIM

The aim of this study was to evaluate the protective effect of metformin against fructosylation-induced cross-β structures and amyloid aggregations of human insulin.

METHODS

UV-absorbance and fluorescence spectroscopy, determination of carbonyl content, free lysine and arginine residues, determination of fructosamine content, SDS-PAGE, circular dichroism (CD) spectroscopy, dynamic light scattering, and scanning and transmission electron microscopy.

RESULTS

Physicochemical studies in the presence or absence of metformin revealed a concentration-dependent structural restoration of fructosylated insulin. Results from the thioflavin-T fluorescence assay suggested that metformin limited the transition of insulin from native to fibrillar state, which was validated by scanning and transmission electron microscopy. Metformin lowered the ThT fluorescence intensity in a concentration- dependent manner. The ThT-specific fluorescence intensity was reduced to 114 and 112.5%. The fluorescence intensity at 2.5 mM metformin was close to native insulin. Electron microscopy revealed that insulin fructosylated by 25 mM fructose in the presence of 2.5 mM metformin suppressed the formation of fibrillar structures. Dynamic light scattering data revealed the potential of metformin to conserve and reinstate the increased hydrodynamic radii (Rh) of fructosylated insulin close to the native conformer. The Rh values of native, fructosylated insulin and insulin incubated with fructose and metformin were found to be 2.65 ± 0.28, 307.6 ± 24.19 nm, and 110.1 ± 4.08 nm, respectively. This study also identified metformin as an antioxidant by protecting critical amino acid residues of the insulin domain.

DISCUSSION

The study reports the protective effects of metformin on insulin structure, conformation, and function. The findings suggest a potential role for metformin in improving the risk profile associated with insulin resistance due to altered structure or the accumulation of protein aggregates. Interaction studies between insulin and metformin presented here are due to the chemical effect; hence, further in-depth studies are required to identify the molecular mechanism of insulin sensitivity and changes in cellular processes and pathways.

CONCLUSION

The results suggest that metformin safeguards against fructosylation-induced structural, conformational, morphological, and amyloidogenic aggregating tendencies of insulin. Protein aggregation has been linked to several neurological and metabolic diseases. Hence, metformin may be crucial in preserving the biological activity of insulin by maintaining and protecting its structural integrity and minimizing the associated comorbidities. The study may further be extended to identify the role of metformin in controlling the gradual insulin resistance in T2DM at the molecular level.

摘要

引言

果糖与其他糖类及糖代谢产物一样,能够使蛋白质糖基化。胰岛素的果糖基化会导致晚期糖基化终产物(AGEs)的生成。还原糖与蛋白质反应形成席夫碱,其特征是存在亚胺(C=N)键。席夫碱随后会发生不可逆重排,接着生成更为稳定的化合物,即阿马多里产物。这些阿马多里产物可进一步发生氧化、脱水、环化和缩合反应,形成剧毒的晚期糖基化终产物(AGEs)。这些过程伴随着氧化应激、二级结构扰动和形态改变,进而发展为淀粉样变。二甲双胍作为一种双胍类药物,是治疗2型糖尿病(T2DM)最常用的药物。

目的

本研究旨在评估二甲双胍对果糖基化诱导的人胰岛素交叉β结构和淀粉样聚集的保护作用。

方法

紫外吸收光谱和荧光光谱法、羰基含量测定、游离赖氨酸和精氨酸残基测定、果糖胺含量测定、十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)、圆二色性(CD)光谱法、动态光散射法以及扫描和透射电子显微镜观察。

结果

在有或没有二甲双胍存在的情况下进行的物理化学研究表明,果糖基化胰岛素的结构恢复具有浓度依赖性。硫黄素-T荧光测定结果表明,二甲双胍限制了胰岛素从天然状态向纤维状状态的转变,扫描和透射电子显微镜观察验证了这一点。二甲双胍以浓度依赖的方式降低了硫黄素-T荧光强度。硫黄素-T特异性荧光强度分别降至114%和112.5%。在2.5 mM二甲双胍存在下,荧光强度接近天然胰岛素。电子显微镜观察显示,在2.5 mM二甲双胍存在下,25 mM果糖使胰岛素果糖基化抑制了纤维状结构的形成。动态光散射数据表明,二甲双胍有潜力使果糖基化胰岛素增加的流体力学半径(Rh)接近天然构象并恢复其值。天然胰岛素、果糖基化胰岛素以及与果糖和二甲双胍一起孵育的胰岛素的Rh值分别为2.65±0.28、307.6±24.19 nm和110.1±4.08 nm。本研究还通过保护胰岛素结构域的关键氨基酸残基,确定二甲双胍为一种抗氧化剂。

讨论

该研究报告了二甲双胍对胰岛素结构、构象和功能的保护作用。研究结果表明,二甲双胍在改善因结构改变或蛋白质聚集体积累导致的胰岛素抵抗相关风险方面可能具有潜在作用。此处呈现的胰岛素与二甲双胍之间的相互作用研究是基于化学效应;因此,需要进一步深入研究以确定胰岛素敏感性以及细胞过程和途径变化的分子机制。

结论

结果表明,二甲双胍可防止果糖基化诱导的胰岛素结构、构象、形态和淀粉样聚集倾向。蛋白质聚集与多种神经和代谢疾病有关。因此,二甲双胍可能通过维持和保护胰岛素的结构完整性并使相关合并症最小化,对保持胰岛素的生物活性至关重要。该研究可能会进一步扩展,以确定二甲双胍在分子水平上控制T2DM中逐渐出现的胰岛素抵抗方面的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验