Suppr超能文献

基于激光雷达分析冠层结构效应与总初级生产力-太阳诱导荧光关系及总初级生产力估算。

Analyzing canopy structure effects based on LiDAR for GPP-SIF relationship and GPP estimation.

作者信息

Shi Shuo, Shi Zixi, Qu Fangfang, Gong Wei, Xu Lu, Liu Chenxi

机构信息

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, China.

Collaborative Innovation Center of Geospatial Technology, Wuhan Hubei, China.

出版信息

Front Plant Sci. 2025 May 19;16:1561826. doi: 10.3389/fpls.2025.1561826. eCollection 2025.

Abstract

The coupling between Gross Primary Productivity (GPP) and Solar-Induced Chlorophyll Fluorescence (SIF) is crucial for understanding terrestrial carbon cycles, with the GPP/SIF ratio regulated by canopy structure, environmental change, and other factors. While studies on canopy structure focus on how internal structure regulates light use efficiency, the impact of remotely sensed canopy structural parameters, particularly Fractional Vegetation Cover (FVC) and Leaf Area Index (LAI), on GPP-SIF coupling remains understudied. Investigating the response of canopy structure to GPP-SIF in large-scale forests supports high-accuracy GPP estimation. LiDAR offers unparalleled advantages in capturing complex vertical canopy structures. In this study, we used multi-source data, particularly LiDAR-derived canopy structure products, to analyze the annual variations in canopy structural parameters and GPP/SIF across different forest types, investigate the response of canopy structure to the GPP-SIF relationship, and employ machine learning models to estimate GPP and assess the contribution of canopy structural factors. We found that LiDAR-derived canopy structure products effectively captured vegetation growth dynamics, exhibiting strong correlation with MODIS products (maximum R²=0.95), but with higher values in densely vegetated areas. GPP/SIF exhibited significant seasonal and forest-type variations, peaking in summer. Its correlation with canopy structural parameters varied seasonally, ranging from 0.21 to 0.75. In summer, the correlation decreased by 5.53% to 30.59% compared to other seasons. In random forest models, incorporating canopy structural parameters improved GPP estimation accuracy (R increasing by 1.30% to 8.07%).

摘要

总初级生产力(GPP)与太阳诱导叶绿素荧光(SIF)之间的耦合对于理解陆地碳循环至关重要,GPP/SIF 比值受冠层结构、环境变化和其他因素的调节。虽然关于冠层结构的研究侧重于内部结构如何调节光利用效率,但遥感冠层结构参数,特别是植被覆盖度(FVC)和叶面积指数(LAI)对 GPP-SIF 耦合的影响仍未得到充分研究。研究大规模森林中冠层结构对 GPP-SIF 的响应有助于高精度估算 GPP。激光雷达在捕捉复杂的垂直冠层结构方面具有无与伦比的优势。在本研究中,我们使用多源数据,特别是激光雷达衍生的冠层结构产品,分析不同森林类型中冠层结构参数和 GPP/SIF 的年变化,研究冠层结构对 GPP-SIF 关系的响应,并使用机器学习模型估算 GPP 并评估冠层结构因素的贡献。我们发现,激光雷达衍生的冠层结构产品有效地捕捉了植被生长动态,与 MODIS 产品具有很强的相关性(最大 R²=0.95),但在植被茂密地区的值更高。GPP/SIF 表现出显著的季节和森林类型差异,在夏季达到峰值。其与冠层结构参数的相关性随季节变化,范围从 0.21 到 0.75。与其他季节相比,夏季的相关性下降了 5.53%至 30.59%。在随机森林模型中,纳入冠层结构参数提高了 GPP 估算精度(R 提高了 1.30%至 8.07%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11c4/12127318/5d8da47929aa/fpls-16-1561826-g001.jpg

相似文献

1
Analyzing canopy structure effects based on LiDAR for GPP-SIF relationship and GPP estimation.
Front Plant Sci. 2025 May 19;16:1561826. doi: 10.3389/fpls.2025.1561826. eCollection 2025.
2
Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest.
Glob Chang Biol. 2017 Jul;23(7):2874-2886. doi: 10.1111/gcb.13590. Epub 2017 Jan 3.
4
Establishing a Gross Primary Productivity Model by SIF and PRI on the Rice Canopy.
Plant Phenomics. 2024 Feb 1;6:0144. doi: 10.34133/plantphenomics.0144. eCollection 2024.
6
Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence.
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11640-11645. doi: 10.1073/pnas.1900278116. Epub 2019 May 28.
9
Measuring forest structure along productivity gradients in the Canadian boreal with small-footprint Lidar.
Environ Monit Assess. 2013 Aug;185(8):6617-34. doi: 10.1007/s10661-012-3051-9. Epub 2013 Jan 6.
10
Potential of hotspot solar-induced chlorophyll fluorescence for better tracking terrestrial photosynthesis.
Glob Chang Biol. 2021 May;27(10):2144-2158. doi: 10.1111/gcb.15554. Epub 2021 Feb 23.

本文引用的文献

1
Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review.
ISPRS J Photogramm Remote Sens. 2020 Jan;159:364-377. doi: 10.1016/j.isprsjprs.2019.11.018.
2
Seasonal changes in GPP/SIF ratios and their climatic determinants across the Northern Hemisphere.
Glob Chang Biol. 2021 Oct;27(20):5186-5197. doi: 10.1111/gcb.15775. Epub 2021 Jul 14.
3
Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress.
Remote Sens Environ. 2019 Sep 15;231. doi: 10.1016/j.rse.2019.04.030. Epub 2019 Jul 13.
4
6
Assessment of five satellite-derived LAI datasets for GPP estimations through ecosystem models.
Sci Total Environ. 2019 Nov 10;690:1120-1130. doi: 10.1016/j.scitotenv.2019.06.516. Epub 2019 Jul 2.
9
Random Forest.
J Insur Med. 2017;47(1):31-39. doi: 10.17849/insm-47-01-31-39.1.
10
Inconsistencies of interannual variability and trends in long-term satellite leaf area index products.
Glob Chang Biol. 2017 Oct;23(10):4133-4146. doi: 10.1111/gcb.13787. Epub 2017 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验