School of Life Sciences, Nanjing University, Jiangsu, 210093, China.
Marine Biological Laboratory, The Ecosystems Center, Woods Hole, MA, 02543, USA.
Glob Chang Biol. 2017 Jul;23(7):2874-2886. doi: 10.1111/gcb.13590. Epub 2017 Jan 3.
Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf-level ChlF was linked with canopy-scale solar-induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts, USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R = 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively; P < 0.0001). We developed a model to estimate GPP from the tower-based measurement of SIF and leaf-level ChlF parameters. The estimation of GPP from this model agreed well with flux tower observations of GPP (R = 0.68; P < 0.0001), demonstrating the potential of SIF for modeling GPP. At the leaf scale, we found that leaf F '/F ', the fraction of absorbed photons that are used for photochemistry for a light-adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopy SIF yield (SIF/APAR, R = 0.79; P < 0.0001). We also found that canopy SIF and SIF-derived GPP (GPP ) were strongly correlated to leaf-level biochemistry and canopy structure, including chlorophyll content (R = 0.65 for canopy GPP and chlorophyll content; P < 0.0001), leaf area index (LAI) (R = 0.35 for canopy GPP and LAI; P < 0.0001), and normalized difference vegetation index (NDVI) (R = 0.36 for canopy GPP and NDVI; P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales.
尽管陆地总初级生产力 (GPP) 的估算对于全球碳循环至关重要,但仍具有一定挑战性。叶绿素荧光 (ChlF) 最近被用于了解光合作用及其对环境的响应,尤其是与遥感数据相关联。然而,在整个生长季节,ChlF 与光合作用在不同空间尺度上的联系仍不清楚。我们在美国马萨诸塞州哈佛森林的一个温带落叶林中,研究了叶片、冠层和生态系统尺度上 ChlF 与光合作用之间的季节性关系,并探索了叶片水平的 ChlF 如何与冠层尺度上的太阳诱导叶绿素荧光 (SIF) 相关联。我们的结果表明,ChlF 能够捕捉光合作用的季节性变化,在不同空间尺度上,ChlF 与光合作用之间存在显著的线性关系(叶片、冠层和卫星尺度上的 R 值分别为 0.73、0.77 和 0.86;P<0.0001)。我们开发了一种从基于塔的 SIF 和叶片水平 ChlF 参数测量中估算 GPP 的模型。该模型估算的 GPP 与通量塔观测的 GPP 非常吻合(R = 0.68;P<0.0001),表明 SIF 具有模拟 GPP 的潜力。在叶片尺度上,我们发现叶片 F '/F '(脉冲幅度调制荧光仪在光适应测量中用于光化学的吸收光子的分数)是与冠层 SIF 产量(SIF/APAR)相关性最好的叶片荧光参数(R = 0.79;P<0.0001)。我们还发现,冠层 SIF 和 SIF 衍生的 GPP(GPP )与叶片水平的生物化学和冠层结构密切相关,包括叶绿素含量(R = 0.65,P<0.0001)、叶面积指数(LAI)(R = 0.35,P<0.0001)和归一化差异植被指数(NDVI)(R = 0.36,P<0.0001)。我们的结果表明,ChlF 可以成为跟踪叶片、冠层和生态系统尺度光合作用的有力工具。