Wang Hao-Tian, Wang Zi-Long, Chen Nian-Hang, Huang Wei, Zou Jian-Lin, Tian Yun-Gang, Ye Guo, Huang Jian, Wu Ruibo, Ye Min
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
J Am Chem Soc. 2025 Jun 18;147(24):20631-20643. doi: 10.1021/jacs.5c03771. Epub 2025 Jun 3.
Flavonoid apiosides are widely distributed in cereals, fruits, vegetables, and medicinal herbs and play critical roles in human health. Their facile and efficient synthesis has been a hot but challenging topic in the fields of both organic chemistry and biosynthesis. However, very few apiosyltransferases (ApiGTs) have been reported thus far. Here, we report the first flavonoid apiosyltransferase (CaApiGT) capable of catalyzing the 2″--apiosylation of flavonoid 3--glycosides in chickpea (). Moreover, we identify PcApiGT from parsley (), which catalyzes the 2″--apiosylation of flavonoid 7-/4'--glycosides. To dissect the mechanisms underlying their different sugar acceptor selectivity, we obtain 10 complex crystal structures of CaApiGT and PcApiGT with resolutions ranging from 1.55 to 2.65 Å, including CaApiGT/UDP, 6 ternary structures of CaApiGT/UDP/sugar acceptors, PcApiGT/UDP, and 2 ternary structures of PcApiGT/UDP/sugar acceptors. Structural analyses, theoretical calculations, and site-directed mutagenesis indicate that flavonoid 3--glycosides and 7--glycosides exhibit a T-shape and streamline shape, respectively, and fit the active pockets of CaApiGT and PcApiGT. Moreover, the sugar acceptor selectivity of these two apiosyltransferases is determined by a key α-helix. In CaApiGT, this α-helix contains multiple polar amino acids, particularly a threonine residue at its end. Using this α-helix motif as a marker, we further characterize four apiosyltransferases from Leguminosae plants that exhibit functional similarity to CaApiGT. This work unravels detailed sugar acceptor selectivity mechanisms of plant apiosyltransferases and provides efficient biocatalysts for the synthesis of flavonoid apiosides.
黄酮类芹菜糖苷广泛分布于谷物、水果、蔬菜和药草中,对人体健康起着关键作用。它们的简便高效合成一直是有机化学和生物合成领域的一个热门但具有挑战性的课题。然而,到目前为止,报道的芹菜糖基转移酶(ApiGTs)非常少。在这里,我们报道了首个能够催化鹰嘴豆中黄酮类3-糖苷2″-芹菜糖基化的黄酮类芹菜糖基转移酶(CaApiGT)。此外,我们从欧芹中鉴定出PcApiGT,它催化黄酮类7-/4'-糖苷的2″-芹菜糖基化。为了解析它们不同糖受体选择性的潜在机制,我们获得了CaApiGT和PcApiGT的10个复杂晶体结构,分辨率在1.55至2.65 Å之间,包括CaApiGT/UDP、6个CaApiGT/UDP/糖受体的三元结构、PcApiGT/UDP以及2个PcApiGT/UDP/糖受体的三元结构。结构分析、理论计算和定点诱变表明,黄酮类3-糖苷和7-糖苷分别呈现T形和流线形,与CaApiGT和PcApiGT的活性口袋相匹配。此外,这两种芹菜糖基转移酶的糖受体选择性由一个关键的α-螺旋决定。在CaApiGT中,这个α-螺旋包含多个极性氨基酸,特别是末端的一个苏氨酸残基。以这个α-螺旋基序为标记,我们进一步鉴定了豆科植物中与CaApiGT功能相似的四种芹菜糖基转移酶。这项工作揭示了植物芹菜糖基转移酶详细的糖受体选择性机制,并为黄酮类芹菜糖苷的合成提供了高效的生物催化剂。