Suppr超能文献

用于预测克罗恩病儿科和青年患者英夫利昔单抗药代动力学的机器学习建模:利用合成数据和真实世界数据的集成建模

Machine Learning Modeling for Predicting Infliximab Pharmacokinetics in Pediatric and Young Adult Patients With Crohn Disease: Leveraging Ensemble Modeling With Synthetic and Real-World Data.

作者信息

Irie Kei, Minar Phillip, Reifenberg Jack, Boyle Brendan M, Noe Joshua D, Hyams Jeffrey S, Mizuno Tomoyuki

机构信息

Division of Translational and Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.

Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.

出版信息

Ther Drug Monit. 2025 Jun 3. doi: 10.1097/FTD.0000000000001348.

Abstract

BACKGROUND

Predicting infliximab pharmacokinetics (PK) is essential for optimizing individualized dosing in pediatric patients with Crohn disease (CD). Machine learning (ML) has emerged as a tool for predicting drug exposure; however, its development typically requires large datasets. This study aimed to develop an ML model for infliximab PK prediction by leveraging population PK model-based synthetic and real-world data.

METHODS

An initial ML model was trained using the XGBoost algorithm with synthetic infliximab concentration data (n = 560,000) generated from an established pediatric PK model. The prediction errors were assessed using real-world data, including 292 plasma concentrations from 93 pediatric and young adult patients with CD. A second XGBoost model, incorporating clinical features, was used to correct these errors. The performance of the model was evaluated using the root mean square error (RMSE) and mean prediction error (MPE).

RESULTS

The first ML model yielded RMSE and MPE values of 6.44 and 1.84 mcg/mL, respectively. The features of the second XGBoost model included the predicted infliximab concentrations, cumulative dose, and dosing interval duration. A 5-fold cross-validation demonstrated improved performance of the ensemble model (RMSE = 4.30 ± 1.09 mcg/mL, MPE = 0.21 ± 0.39 mcg/mL) compared with the initial model and was comparable with the Bayesian approach (RMSE = 4.81 mcg/mL, MPE = -0.67 mcg/mL).

CONCLUSIONS

This study demonstrated the feasibility of combining synthetic and real-world data to develop an ML-based approach for infliximab PK prediction, potentially enhancing precision dosing in pediatric CD.

摘要

背景

预测英夫利昔单抗的药代动力学(PK)对于优化克罗恩病(CD)儿科患者的个体化给药至关重要。机器学习(ML)已成为预测药物暴露的一种工具;然而,其开发通常需要大型数据集。本研究旨在通过利用基于群体PK模型的合成数据和真实世界数据,开发一种用于预测英夫利昔单抗PK的ML模型。

方法

使用XGBoost算法,基于一个已建立的儿科PK模型生成的合成英夫利昔单抗浓度数据(n = 560,000)训练初始ML模型。使用真实世界数据评估预测误差,这些数据包括来自93例儿科和青年CD患者的292份血浆浓度。使用包含临床特征的第二个XGBoost模型来校正这些误差。使用均方根误差(RMSE)和平均预测误差(MPE)评估模型的性能。

结果

第一个ML模型的RMSE和MPE值分别为6.44和1.84 mcg/mL。第二个XGBoost模型的特征包括预测的英夫利昔单抗浓度、累积剂量和给药间隔持续时间。5折交叉验证表明,与初始模型相比,集成模型的性能有所提高(RMSE = 4.30 ± 1.09 mcg/mL,MPE = 0.21 ± 0.39 mcg/mL),并且与贝叶斯方法相当(RMSE = 4.81 mcg/mL,MPE = -0.67 mcg/mL)。

结论

本研究证明了结合合成数据和真实世界数据来开发基于ML的英夫利昔单抗PK预测方法的可行性,这可能会提高儿科CD的精准给药。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验