Pulick Eric, Curtin John, Mintz Yonatan
Department of Industrial and Systems Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, United States.
Department of Psychology, College of Letters & Science, University of Wisconsin-Madison, Madison, WI, United States.
JMIR Form Res. 2025 Jun 3;9:e73265. doi: 10.2196/73265.
Many mental health conditions (eg, substance use or panic disorders) involve long-term patient assessment and treatment. Growing evidence suggests that the progression and presentation of these conditions may be highly individualized. Digital sensing and predictive modeling can augment scarce clinician resources to expand and personalize patient care. We discuss techniques to process patient data into risk predictions, for instance, the lapse risk for a patient with alcohol use disorder (AUD). Of particular interest are idiographic approaches that fit personalized models to each patient.
This study bridges 2 active research areas in mental health: risk prediction and time-series idiographic modeling. Existing work in risk prediction has focused on machine learning (ML) classifier approaches, typically trained at the population level. In contrast, psychological explanatory modeling has relied on idiographic time-series techniques. We propose state space modeling, an idiographic time-series modeling framework, as an alternative to ML classifiers for patient risk prediction.
We used a 3-month observational study of participants (N=148) in early recovery from AUD. Using once-daily ecological momentary assessment (EMA), we trained idiographic state space models (SSMs) and compared their predictive performance to logistic regression and gradient-boosted ML classifiers. Performance was evaluated using the area under the receiver operating characteristic curve (AUROC) for 3 prediction tasks: same-day lapse, lapse within 3 days, and lapse within 7 days. To mimic real-world use, we evaluated changes in AUROC when models were given access to increasing amounts of a participant's EMA data (15, 30, 45, 60, and 75 days). We used Bayesian hierarchical modeling to compare SSMs to the benchmark ML techniques, specifically analyzing posterior estimates of mean model AUROC.
Posterior estimates strongly suggested that SSMs had the best mean AUROC performance in all 3 prediction tasks with ≥30 days of participant EMA data. With 15 days of data, results varied by task. Median posterior probabilities that SSMs had the best performance with ≥30 days of participant data for same-day lapse, lapse within 3 days, and lapse within 7 days were 0.997 (IQR 0.877-0.999), 0.999 (IQR 0.992-0.999), and 0.998 (IQR 0.955-0.999), respectively. With 15 days of data, these median posterior probabilities were 0.732, <0.001, and <0.001, respectively.
The study findings suggest that SSMs may be a compelling alternative to traditional ML approaches for risk prediction. SSMs support idiographic model fitting, even for rare outcomes, and can offer better predictive performance than existing ML approaches. Further, SSMs estimate a model for a patient's time-series behavior, making them ideal for stepping beyond risk prediction to frameworks for optimal treatment selection (eg, administered using a digital therapeutic platform). Although AUD was used as a case study, this SSM framework can be readily applied to risk prediction tasks for other mental health conditions.
许多心理健康状况(如物质使用障碍或惊恐障碍)涉及长期的患者评估和治疗。越来越多的证据表明,这些状况的进展和表现可能高度个体化。数字传感和预测建模可以增加稀缺的临床医生资源,以扩大和个性化患者护理。我们讨论了将患者数据处理为风险预测的技术,例如,酒精使用障碍(AUD)患者的复吸风险。特别值得关注的是针对每个患者拟合个性化模型的个案法。
本研究连接了心理健康领域的两个活跃研究领域:风险预测和时间序列个案建模。风险预测方面的现有工作主要集中在机器学习(ML)分类器方法上,通常是在群体层面进行训练。相比之下,心理学解释性建模依赖于个案时间序列技术。我们提出状态空间建模,一种个案时间序列建模框架,作为用于患者风险预测的ML分类器的替代方法。
我们对148名处于AUD早期康复阶段的参与者进行了为期3个月的观察性研究。使用每日一次的生态瞬时评估(EMA),我们训练了个案状态空间模型(SSM),并将其预测性能与逻辑回归和梯度提升ML分类器进行比较。使用受试者工作特征曲线下面积(AUROC)对3个预测任务的性能进行评估:当日复吸、3天内复吸和7天内复吸。为了模拟实际应用,当模型能够访问参与者越来越多的EMA数据(15、30、45、60和75天)时,我们评估了AUROC的变化。我们使用贝叶斯层次建模将SSM与基准ML技术进行比较,具体分析平均模型AUROC的后验估计。
后验估计强烈表明,在所有3个预测任务中,当有≥30天的参与者EMA数据时,SSM具有最佳的平均AUROC性能。对于15天的数据,结果因任务而异。在当日复吸、3天内复吸和7天内复吸这3个预测任务中,当有≥30天的参与者数据时,SSM具有最佳性能的后验概率中位数分别为0.997(IQR 0.877 - 0.999)、0.999(IQR 0.992 - 0.999)和0.998(IQR 0.955 - 0.999)。对于15天的数据,这些后验概率中位数分别为0.732、<0.001和<0.001。
研究结果表明,对于风险预测,SSM可能是传统ML方法的一个有吸引力的替代方案。SSM支持个案模型拟合,即使对于罕见结果也是如此,并且可以提供比现有ML方法更好的预测性能。此外,SSM估计患者时间序列行为模型,使其非常适合超越风险预测,进入最佳治疗选择框架(例如,使用数字治疗平台进行管理)。虽然以AUD作为案例研究,但这个SSM框架可以很容易地应用于其他心理健康状况的风险预测任务。