Chen Zhaohui, Li Qiang, Hei Peng, Liao Yunxiang, Liu Yifan, Ma Zhen, Wang Qiang, Song Yu, Cui Weibin
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China.
Department of Physics and Chemistry of Materials, School of Material Science and Engineering, Northeastern University, Shenyang, 110819, China.
ChemSusChem. 2025 Jul 27;18(15):e202500767. doi: 10.1002/cssc.202500767. Epub 2025 Jul 4.
2D heterostructure materials exhibiting strong synergistic effects hold significant potential for applications in Li-ion batteries (LIBs). Here, a MoS/MoC heterostructure via using thiourea as an annealing agent for in situ sulfurization is prepared. MoS is grown directly from MoC i-MXene nanosheets to form 3D wrinkled structures. Furthermore, the heterostructure with strengthened interaction between MoS and MoC facilitates Li adsorption and enhances structural stability. As an anode for LIBs, MoS/MoC heterostructures demonstrate an excellent specific capacity of 884.6 mAh g at 0.05 A g and superior rate performance. Additionally, a reversible capacity of 437.2 mAh g after 500 cycles at 0.5 A g demonstrates excellent reversibility and sustained stability over long cycles. By density functional theory calculations, such enhanced electrochemical energy storage performance is caused by superior conductivity and improved Li-ion adsorption capability due to the 2H-MoS/MoC heterostructure. Additionally, a full cell based on a MoS/MoC heterostructure anode and a commercial NCM811 cathode demonstrates superior rate capability and cycling stability and potential for practical applications. This work presents a new insight into unique MoS/MoC heterostructures for high-performance Li-ion storage.
具有强协同效应的二维异质结构材料在锂离子电池(LIBs)应用中具有巨大潜力。在此,通过使用硫脲作为原位硫化的退火剂制备了一种MoS/MoC异质结构。MoS直接从MoC i-MXene纳米片生长形成三维褶皱结构。此外,MoS与MoC之间相互作用增强的异质结构促进了锂的吸附并增强了结构稳定性。作为LIBs的阳极,MoS/MoC异质结构在0.05 A g时表现出884.6 mAh g的优异比容量和卓越的倍率性能。此外,在0.5 A g下循环500次后,可逆容量为437.2 mAh g,表明在长循环中具有优异的可逆性和持续稳定性。通过密度泛函理论计算,这种增强的电化学储能性能是由于2H-MoS/MoC异质结构具有优异的导电性和改善的锂离子吸附能力。此外,基于MoS/MoC异质结构阳极和商业NCM811阴极的全电池表现出优异的倍率性能和循环稳定性以及实际应用潜力。这项工作为高性能锂离子存储的独特MoS/MoC异质结构提供了新的见解。