Suppr超能文献

构建一种富含硫空位的二元硫化物@碳异质结构,在高性能二次电池中展现快速反应动力学。

Engineering a Sulfur-Vacancy-Rich Binary Sulfides@Carbon Heterostructure Displaying Fast Reaction Kinetics in High-Performance Secondary Batteries.

作者信息

Huang Xiaofei, Fan Yunmiao, Li Jiatong, Han Tianli, Zhu Yajun, Yang Shanshan, Yang Jinhu, Zhang Huigang, Liu Jinyun

机构信息

Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China.

State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 23;17(29):42052-42065. doi: 10.1021/acsami.5c10566. Epub 2025 Jul 11.

Abstract

Sodium-ion (Na-ion) batteries are currently restricted by nonideal anodes with poor reaction kinetics. Developing emerging anodes with vacancies and heterostructures would efficiently accelerate ion diffusion and electron transfer, thus improving the reaction kinetics, which still remains a big challenge. Herein, we develop a sulfur-vacancy-rich BiS/MoS@nitrogen-doped carbon (BiS/MoS@NC) heterostructure, which shows significantly improved kinetics and excellent performance as a Na-ion battery anode. The heterostructure working with sulfur vacancies enables high-speed ion diffusion and electron transfer by a synergistic effect of multiple regulations. The in situ Raman spectrum verifies the reversible conversion during charge-discharge, extended X-ray absorption fine structure (EXAFS) spectra show atomic dispersion and robust Bi-S bonds in the heterostructure, and electron paramagnetic resonance (EPR) spectra and density functional theory (DFT) calculations demonstrate the enhancement mechanism. The BiS/MoS@NC anode retains a high capacity of 304.5 mAh g after 1000 cycles at 1.0 A g and displays 273.3 mAh g after 3200 cycles at 10.0 A g, significantly exceeding the values of most reported sulfide anodes. The full cell constructed from a BiS/MoS@NC anode and a NaV(PO) cathode also displays good stability after 2000 cycles. Our findings provide a general approach to develop vacancy-rich heterostructures for high-performance batteries, and in-depth insights are important for uncovering mechanisms of some other energy-storage systems.

摘要

钠离子(Na-ion)电池目前受到反应动力学较差的不理想阳极的限制。开发具有空位和异质结构的新型阳极将有效加速离子扩散和电子转移,从而改善反应动力学,而这仍然是一个巨大的挑战。在此,我们开发了一种富含硫空位的BiS/MoS@氮掺杂碳(BiS/MoS@NC)异质结构,作为钠离子电池阳极,它表现出显著改善的动力学和优异的性能。与硫空位协同工作的异质结构通过多种调控的协同效应实现了高速离子扩散和电子转移。原位拉曼光谱验证了充放电过程中的可逆转变,扩展X射线吸收精细结构(EXAFS)光谱显示了异质结构中的原子分散和稳定的Bi-S键,电子顺磁共振(EPR)光谱和密度泛函理论(DFT)计算证明了其增强机制。BiS/MoS@NC阳极在1.0 A g下循环1000次后仍保持304.5 mAh g的高容量,在10.0 A g下循环3200次后显示273.3 mAh g,显著超过大多数报道的硫化物阳极的值。由BiS/MoS@NC阳极和NaV(PO)阴极构建的全电池在2000次循环后也显示出良好的稳定性。我们的研究结果提供了一种开发用于高性能电池的富含空位异质结构的通用方法,深入的见解对于揭示其他一些储能系统的机制很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验