Aydin Alhun, Keski-Rahkonen Joonas, Graf Anton M, Yuan Shaobing, Ouyang Xiao-Yu, Müstecaplıoğlu Özgür E, Heller Eric J
Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Türkiye.
Department of Physics, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2426518122. doi: 10.1073/pnas.2426518122. Epub 2025 Jun 3.
The quantum acoustic framework has recently emerged as a nonperturbative, coherent approach to electron-lattice interactions, uncovering rich physics often obscured by perturbative methods with incoherent scattering events. Here, we model the strongly coupled dynamics of electrons and acoustic lattice vibrations within this framework, representing lattice vibrations as coherent states and electrons as quantum wave packets, in a manner distinctively different from tight-binding or discrete hopping-based approaches. We derive and numerically implement electron backaction on the lattice, providing both visual and quantitative insights into electron wave packet evolution and the formation of acoustic polarons. We investigate polaron binding energies across varying material parameters and compute key observables-including mean square displacement, kinetic energy, potential energy, and vibrational energy-over time. Our findings reveal the conditions that favor polaron formation, which is enhanced by low temperatures, high deformation potential constants, slow sound velocities, and high effective masses. Additionally, we explore the impact of external electric and magnetic fields, showing that while polaron formation remains robust under moderate fields, it is weakly suppressed at higher field strengths. These results deepen our understanding of polaron dynamics and pave the way for future studies into nontrivial transport behavior in quantum materials.
量子声学框架最近作为一种处理电子-晶格相互作用的非微扰、相干方法出现,揭示了许多常常被具有非相干散射事件的微扰方法所掩盖的丰富物理现象。在此,我们在这个框架内对电子与声学晶格振动的强耦合动力学进行建模,将晶格振动表示为相干态,将电子表示为量子波包,其方式与基于紧束缚或离散跳跃的方法显著不同。我们推导并通过数值方法实现了电子对晶格的反作用,为电子波包演化和声子极化子的形成提供了直观和定量的见解。我们研究了不同材料参数下极化子的结合能,并计算了包括均方位移、动能、势能和振动能随时间变化的关键可观测量。我们的研究结果揭示了有利于极化子形成的条件,低温、高形变势常数、慢声速和高有效质量会增强极化子的形成。此外,我们探讨了外部电场和磁场的影响,结果表明,虽然在中等场强下极化子的形成仍然很强劲,但在更高场强下会受到微弱抑制。这些结果加深了我们对极化子动力学的理解,并为未来研究量子材料中的非平凡输运行为铺平了道路。