Suppr超能文献

利用社交媒体高效在线招募有抑郁症状的患者:横断面观察性研究

Efficient Online Recruitment of Patients With Depressive Symptoms Using Social Media: Cross-Sectional Observational Study.

作者信息

Haas Carolin, Klein Lisa, Heckl Marlene, Kesić Marija, Rueß Ann-Katrin, Gensichen Jochen, Lukaschek Karoline, Kruse Tobias

机构信息

Institute of General Practice and Family Medicine, University Hospital, LMU Munich, Munich, Germany.

"POKAL (Predictors and Outcomes in Primary Care Depression Care) Graduate Program" (DFG-GrK 2621), Munich, Germany.

出版信息

JMIR Ment Health. 2025 Jun 3;12:e65920. doi: 10.2196/65920.

Abstract

BACKGROUND

Over 80% of trials worldwide fail to complete patient recruitment within the initially planned time frame. Over the past decade, the use of social media for recruitment in medical research has become increasingly popular. While Google and Facebook are well established, newer social media channels such as Instagram and TikTok garner less research attention as recruitment tools. Although some studies have investigated the advantages and disadvantages of using social media for recruitment, a considerable gap still exists in understanding the precise mechanisms and factors that make different social media platforms most effective and cost-efficient for patient recruitment in mental health studies.

OBJECTIVE

This study evaluates the effectiveness of recruitment strategies implemented during the investigative phase of a validation study for a new suicidality assessment questionnaire optimized for primary care.

METHODS

We describe how online recruitment contributed to the enrollment of patients with depressive symptoms for the validation of a suicidality questionnaire (Suicide Prevention in Primary Care), which required over 500 participants. To this end, we analyzed differences in sample demographics between traditionally recruited and online participants, compared advertising metrics and conversion rates, and conducted a cost-benefit analysis.

RESULTS

We found online recruitment to be a fast and efficient method of securing the required number of participants with depressive symptoms for the study and increasing patient diversity. Considering the distribution of gender, age, and Patient Health Questionnaire-9 scores, participants recruited offline and online were equally eligible for the study. Online recruitment demonstrated high advertising efficiency. For example, the study population responded well to video advertisements on social media; these performed 50% to 70% more cost-efficiently than the best image advertisements. Moreover, a long website copy proved slightly better than a short version. Pixel tracking for improved advertisement targeting reduced advertising costs per suitable participant by 83.3%, making the advertisements 6 times more cost-efficient.

CONCLUSIONS

Social media recruitment increased the diversity of patients in the studies and proved suitable for vulnerable and hard-to-reach populations. The total cost per patient recruited online was comparable to that achieved using offline methods, but overall recruitment progressed faster. In this study, implementing video advertisements and pixel tracking resulted in significant cost savings.

摘要

背景

全球超过80%的试验未能在最初计划的时间框架内完成患者招募。在过去十年中,社交媒体在医学研究招募中的应用越来越普遍。虽然谷歌和脸书已广为人知,但Instagram和TikTok等较新的社交媒体渠道作为招募工具获得的研究关注较少。尽管一些研究调查了使用社交媒体进行招募的优缺点,但在理解使不同社交媒体平台在心理健康研究中进行患者招募最有效和最具成本效益的精确机制和因素方面,仍然存在相当大的差距。

目的

本研究评估了在一项针对初级保健优化的新自杀倾向评估问卷的验证研究的调查阶段实施的招募策略的有效性。

方法

我们描述了在线招募如何有助于招募有抑郁症状的患者以验证一份自杀倾向问卷(初级保健中的自杀预防),该问卷需要500多名参与者。为此,我们分析了传统招募参与者和在线招募参与者之间的样本人口统计学差异,比较了广告指标和转化率,并进行了成本效益分析。

结果

我们发现在线招募是一种快速有效的方法,可以为该研究招募到所需数量的有抑郁症状的参与者,并增加患者的多样性。考虑到性别、年龄和患者健康问卷-9得分的分布,线下招募和在线招募的参与者同样符合该研究的条件。在线招募显示出较高的广告效率。例如,研究人群对社交媒体上的视频广告反应良好;这些广告的成本效益比最佳图像广告高50%至70%。此外,较长的网站文案被证明略优于较短的版本。用于改进广告定位的像素跟踪使每个合适参与者的广告成本降低了83.3%,使广告的成本效益提高了6倍。

结论

社交媒体招募增加了研究中患者的多样性,并被证明适用于弱势群体和难以接触到的人群。在线招募每名患者的总成本与使用线下方法相当,但总体招募进展更快。在本研究中,实施视频广告和像素跟踪节省了大量成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62f8/12174873/0ffb90c7acf6/mental_v12i1e65920_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验