Suppr超能文献

芽孢杆菌分泌的抗微生物脂肽丰原素的最新进展:结构、生物合成、抗真菌机制及其在食品保鲜中的潜在应用

Recent advances in antimicrobial lipopeptide fengycin secreted by Bacillus: Structure, biosynthesis, antifungal mechanisms, and potential application in food preservation.

作者信息

Chen Mengling, Wang Hui, Zhang Chuang, Zhang Yue, Sun Hao, Yu Lu, Zhang Qiuqin, Chen Xiaohong, Xiao Hongmei

机构信息

Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572025, PR China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.

College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.

出版信息

Food Chem. 2025 Oct 15;489:144937. doi: 10.1016/j.foodchem.2025.144937. Epub 2025 May 27.

Abstract

Fengycin, a cyclic lipopeptide generated by Bacillus, is a potent biocontrol agent against plant diseases. Compared with chemical antibiotics, fengycin exhibits high antifungal efficiency with low toxicity and great biodegradability, making it a promising alternatives to antibiotics. The structure and biosynthesis of fengycin are briefly covered in this review. The antifungal mechanisms of fengycin are mainly outlined as follows: (1) degrading the cell wall integrity; (2) disrupting cell membranes; (3) interfering with intracellular metabolism; (4) inducing programmed cell death and autophagy; and (5) inducing defense response in plants. Ultimately, a summary of fengycin's applications in fruits and vegetables preservation is provided. This comprehensive knowledge encourages the commercial use of fengycin and offers a foundation for in-depth research into molecular mechanism, which contributes to modifying the structure of fengycin and designing fengycin analogues with more stable chemical properties and higher biological activity.

摘要

丰原素是一种由芽孢杆菌产生的环状脂肽,是一种有效的植物病害生物防治剂。与化学抗生素相比,丰原素具有高效、低毒和良好的生物降解性,是一种很有前途的抗生素替代品。本文简要介绍了丰原素的结构和生物合成。丰原素的抗真菌机制主要如下:(1)破坏细胞壁完整性;(2)破坏细胞膜;(3)干扰细胞内代谢;(4)诱导程序性细胞死亡和自噬;(5)诱导植物的防御反应。最后,总结了丰原素在果蔬保鲜中的应用。这些全面的知识促进了丰原素的商业应用,并为深入研究分子机制提供了基础。这有助于修饰丰原素的结构,并设计出化学性质更稳定、生物活性更高的丰原素类似物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验