García-Hernández Erwin
Tecnológico Nacional de México / Instituto Tecnológico Superior de Zacapoaxtla, 73680, Zacapoaxtla Puebla, Mexico.
J Mol Graph Model. 2025 Nov;140:109099. doi: 10.1016/j.jmgm.2025.109099. Epub 2025 May 30.
Biphenylene, a recently synthesized graphene allotrope, has demonstrated potential for pollutant adsorption and sensing applications. In this study, we investigate the interactions between biphenylene and three chlorinated aliphatic hydrocarbons: dichloroethylene, trichloromethane, and tetrachloroethylene, utilizing density functional theory calculations. Geometrical analysis shows that all complexes exhibit interaction distances above 3.3 Å, indicating physisorption governed by van der Waals forces. The complex with tetrachloroethylene exhibits the strongest interaction (adsorption energy of -0.48 eV) due to π-π stacking, while the systems with trichloromethane and dichloroethylene exhibit weaker adsorption (-0.30 eV and -0.35 eV, respectively). Solvent effects slightly diminish adsorption stability by up to ∼6 %. Electronic analysis reveals that biphenylene retains its intrinsic properties upon complexation, with minimal changes in the HOMO-LUMO gap (1.00 eV) and chemical potential (-3.92 eV). However, the dipole moment increases significantly (up to 1.40 D for the trichloromethane complex), enhancing solubility. Rapid recovery times for the complexes with trichloromethane (1.33 × 10 s) and dichloroethylene (8.41 × 10 s) suggest excellent sensing capabilities, while the tetrachloroethylene system's longer desorption time (1.42 × 10 s) indicates potential for pollutant adsorption. These findings highlight biphenylene as a promising material for environmental applications, including the sensing and removal of chlorinated pollutants.
亚联苯是一种最近合成的石墨烯同素异形体,已在污染物吸附和传感应用方面展现出潜力。在本研究中,我们利用密度泛函理论计算,研究了亚联苯与三种氯代脂肪烃(二氯乙烯、三氯甲烷和四氯乙烯)之间的相互作用。几何分析表明,所有配合物的相互作用距离均超过3.3 Å,表明其为受范德华力支配的物理吸附。由于π-π堆积作用,亚联苯与四氯乙烯形成的配合物表现出最强的相互作用(吸附能为-0.48 eV),而与三氯甲烷和二氯乙烯形成的体系吸附较弱(分别为-0.30 eV和-0.35 eV)。溶剂效应使吸附稳定性略有降低,降幅高达约6%。电子分析表明,亚联苯在形成配合物后仍保留其固有性质,其最高占据分子轨道-最低未占据分子轨道能隙(1.00 eV)和化学势(-3.92 eV)变化极小。然而,偶极矩显著增加(三氯甲烷配合物高达1.40 D),溶解性增强。亚联苯与三氯甲烷(1.33×10 s)和二氯乙烯(8.41×10 s)形成的配合物恢复时间较短,表明其具有出色的传感能力,而亚联苯与四氯乙烯体系的脱附时间较长(1.42×10 s),表明其具有污染物吸附潜力。这些研究结果凸显了亚联苯作为一种用于环境应用的有前景材料,可用于传感和去除氯代污染物。