Suppr超能文献

使用深度图像先验和一种新颖的参数放大策略在动态正电子发射断层扫描中进行直接参数重建。

Direct parametric reconstruction in dynamic PET using deep image prior and a novel parameter magnification strategy.

作者信息

Hong Xiaotong, Wang Fanghu, Sun Hao, Arabi Hossein, Lu Lijun

机构信息

School of Biomedical Engineering, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Road, Guangzhou, 510515, China.

The WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, China.

出版信息

Comput Biol Med. 2025 Aug;194:110487. doi: 10.1016/j.compbiomed.2025.110487. Epub 2025 Jun 2.

Abstract

BACKGROUND/PURPOSE: Multiple parametric imaging in positron emission tomography (PET) is challenging due to the noisy dynamic data and the complex mapping to kinetic parameters. Although methods like direct parametric reconstruction have been proposed to improve the image quality, limitations persist, particularly for nonlinear and small-value micro-parameters (e.g., k, k). This study presents a novel unsupervised deep learning approach to reconstruct and improve the quality of these micro-parameters.

METHODS

We proposed a direct parametric image reconstruction model, DIP-PM, integrating deep image prior (DIP) with a parameter magnification (PM) strategy. The model employs a U-Net generator to predict multiple parametric images using a CT image prior, with each output channel subsequently magnified by a factor to adjust the intensity. The model was optimized with a log-likelihood loss computed between the measured projection data and forward projected data. Two tracer datasets were simulated for evaluation: Rb data using the 1-tissue compartment (1 TC) model and F-FDG data using the 2-tissue compartment (2 TC) model, with 10-fold magnification applied to the 1 TC k and the 2 TC k, respectively. DIP-PM was compared to the indirect method, direct algorithm (OTEM) and the DIP method without parameter magnification (DIP-only). Performance was assessed on phantom data using peak signal-to-noise ratio (PSNR), normalized root mean square error (NRMSE) and structural similarity index (SSIM), as well as on real F-FDG scan from a male subject.

RESULTS

For the 1 TC model, OTEM performed well in K reconstruction, but both indirect and OTEM methods showed high noise and poor performance in k. The DIP-only method suppressed noise in k, but failed to reconstruct fine structures in the myocardium. DIP-PM outperformed other methods with well-preserved detailed structures, particularly in k, achieving the best metrics (PSNR: 19.00, NRMSE: 0.3002, SSIM: 0.9289). For the 2 TC model, traditional methods exhibited high noise and blurred structures in estimating all nonlinear parameters (K, k, k), while DIP-based methods significantly improved image quality. DIP-PM outperformed all methods in k (PSNR: 21.89, NRMSE: 0.4054, SSIM: 0.8797), and consequently produced the most accurate 2 TC K images (PSNR: 22.74, NRMSE: 0.4897, SSIM: 0.8391). On real FDG data, DIP-PM also showed evident advantages in estimating K, k and k while preserving myocardial structures.

CONCLUSIONS

The results underscore the efficacy of the DIP-based direct parametric imaging in generating and improving quality of PET parametric images. This study suggests that the proposed DIP-PM method with the parameter magnification strategy can enhance the fidelity of nonlinear micro-parameter images.

摘要

背景/目的:由于动态数据存在噪声以及向动力学参数的复杂映射,正电子发射断层扫描(PET)中的多参数成像具有挑战性。尽管已提出诸如直接参数重建等方法来提高图像质量,但局限性仍然存在,特别是对于非线性和小值微参数(例如,k,k)。本研究提出了一种新颖的无监督深度学习方法来重建和提高这些微参数的质量。

方法

我们提出了一种直接参数图像重建模型DIP-PM,将深度图像先验(DIP)与参数放大(PM)策略相结合。该模型采用U-Net生成器,利用CT图像先验预测多个参数图像,每个输出通道随后通过一个因子进行放大以调整强度。通过在测量的投影数据和正向投影数据之间计算对数似然损失来优化该模型。模拟了两个示踪剂数据集进行评估:使用单组织隔室(1TC)模型的Rb数据和使用双组织隔室(2TC)模型的F-FDG数据,分别对1TC的k和2TC的k应用10倍放大。将DIP-PM与间接方法、直接算法(OTEM)以及无参数放大的DIP方法(仅DIP)进行比较。使用峰值信噪比(PSNR)、归一化均方根误差(NRMSE)和结构相似性指数(SSIM)在体模数据上评估性能,并在一名男性受试者的真实F-FDG扫描上进行评估。

结果

对于1TC模型,OTEM在K重建方面表现良好,但间接方法和OTEM方法在k方面均显示出高噪声和较差的性能。仅DIP方法抑制了k中的噪声,但未能重建心肌中的精细结构。DIP-PM在保留详细结构方面优于其他方法,特别是在k方面,实现了最佳指标(PSNR:19.00,NRMSE:0.3002,SSIM:0.9289)。对于2TC模型,传统方法在估计所有非线性参数(K,k,k)时表现出高噪声和模糊结构,而基于DIP的方法显著提高了图像质量。DIP-PM在k方面优于所有方法(PSNR:21.89,NRMSE:0.4054,SSIM:0.8797),因此生成了最准确的2TC K图像(PSNR:22.74,NRMSE:0.4897,SSIM:0.8391)。在真实的FDG数据上,DIP-PM在估计K、k和k同时保留心肌结构方面也显示出明显优势。

结论

结果强调了基于DIP的直接参数成像在生成和提高PET参数图像质量方面的有效性。本研究表明,所提出的具有参数放大策略的DIP-PM方法可以提高非线性微参数图像的保真度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验