Suppr超能文献

基于光谱计算机断层扫描的定量参数联合细胞外体积分数预测胃癌淋巴结转移

Spectral computed tomography-based quantitative parameters combined with extracellular volume fraction to predict lymph node metastases in gastric cancer.

作者信息

Zhang Xiuling, Peng Leping, Ma Fang, Zhang Fan, Zhang Xiaoyue, Liang Xiaoqin, Wei Zhaokun, Li Xinli, Ma Yaqiong, Huang Gang, Wang Lili

机构信息

Gansu University of Chinese Medicine, Lanzhou, 730000, China.

Department of Clinical and Technical Support, Philips Healthcare, Xi'an, 710065, China.

出版信息

Eur Radiol. 2025 Jun 3. doi: 10.1007/s00330-025-11705-y.

Abstract

OBJECTIVES

Preoperative prediction of lymph node metastasis (LNM) is important for gastric cancer (GC) diagnosis, treatment and prognosis. This study aimed to predict LNM risk in GC using quantitative parameters and extracellular volume fraction (ECV%) derived from spectral computed tomography (CT).

MATERIALS AND METHODS

Data from 230 lymph nodes (LNs) (97 nonmetastatic, 133 metastatic) were collected from 70 GC patients and were randomly divided into a training cohort and a test cohort (6:4 ratio). LN qualitative features (including edge, shape and degree of enhancement), spectral CT-derived quantitative parameters and ECV% were assessed. Multivariate logistic regression analysis with the forward variable selection method was used to build 3 models: Model 1 (traditional features: LN edge, short axis diameter), Model 2 (spectral CT parameters: iodine concentration in arterial and delayed phases), and Model 3 (spectral CT parameters and ECV%). Diagnostic performance was evaluated using AUC and compared with the Delong test.

RESULTS

In both cohorts, a significant difference in ECV% was observed between positive and negative LNs (p < 0.001), and the diagnostic efficacy of ECV% (AUC = 0.823 and 0.803, respectively, both p < 0.001) was higher than that of other parameters. Model 3 demonstrated significantly higher diagnostic efficacy than Models 1 and 2 in both cohorts (AUC = 0.858 and 0.881, respectively; both p < 0.001).

CONCLUSION

ECV% can help diagnose LNM in GC, and combining the spectral CT quantitative features with ECV% can further improve diagnosis. This finding enables accurate preoperative prediction of LNM and the GC prognosis so that patients receive personalized treatment.

KEY POINTS

Question Predicting lymph node metastasis (LNM) based on the LN remains a challenge; can spectral CT combined with the Extracellular volume fraction (ECV%) model predict regional LNM? Findings Based on the LN level, the spectral CT combined ECV% model could more accurately predict regional LNM in the training and test cohort. Clinical relevance Accurate and non-invasive preoperative prediction of LNM in each region is important for the individualized treatment and prognosis of gastric cancer. Assisting physicians in selecting the most appropriate treatment approaches to optimize patient outcomes.

摘要

目的

术前预测淋巴结转移(LNM)对胃癌(GC)的诊断、治疗及预后具有重要意义。本研究旨在利用光谱计算机断层扫描(CT)得出的定量参数和细胞外容积分数(ECV%)预测GC患者的LNM风险。

材料与方法

收集70例GC患者的230个淋巴结(LNs)(97个无转移,133个有转移)的数据,并随机分为训练队列和测试队列(比例为6:4)。评估LN的定性特征(包括边缘、形状和强化程度)、光谱CT得出的定量参数及ECV%。采用向前变量选择法进行多因素逻辑回归分析,构建3个模型:模型1(传统特征:LN边缘、短轴直径)、模型2(光谱CT参数:动脉期和延迟期碘浓度)和模型3(光谱CT参数和ECV%)。使用AUC评估诊断性能,并通过德龙检验进行比较。

结果

在两个队列中,阳性和阴性LN的ECV%均存在显著差异(p < 0.001),且ECV%的诊断效能(AUC分别为0.823和0.803,均p < 0.001)高于其他参数。在两个队列中,模型3的诊断效能均显著高于模型1和模型2(AUC分别为0.858和0.881;均p < 0.001)。

结论

ECV%有助于诊断GC中的LNM,将光谱CT定量特征与ECV%相结合可进一步提高诊断准确性。这一发现能够准确地术前预测LNM及GC的预后,从而使患者获得个性化治疗。

关键点

问题基于LN预测淋巴结转移(LNM)仍然是一项挑战;光谱CT结合细胞外容积分数(ECV%)模型能否预测区域LNM?研究结果基于LN水平,光谱CT结合ECV%模型在训练和测试队列中能更准确地预测区域LNM。临床意义准确且无创地术前预测各区域的LNM对胃癌的个体化治疗和预后至关重要。帮助医生选择最合适的治疗方法以优化患者治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验