Duputel Benjamin, Stallard Nigel, Montestruc François, Zohar Sarah, Ursino Moreno
Inserm, UMRS 1346, Université Paris Cité, Inria, HeKA, Paris, France.
eXYSTAT, Malakoff, France.
Stat Med. 2025 Jun;44(13-14):e70144. doi: 10.1002/sim.70144.
Population selection is a crucial subject in clinical development nowadays as personalized medicine is growing in interest. Evolution in biomarker scanning techniques allows for the composition and detection of sub-populations of interest when analyzing new drug responses in a disease. Seamless adaptive trials could allow for subgroup analysis with the selection of the most promising population at interim analysis. We propose a hybrid Bayesian design for seamless Phase II/III trials with binary and time-to-event outcomes for the first and second phases, respectively. In this work, at interim analysis, several prior distributions, including shrinkage prior, are compared to possibly select/discard a population, and a final test using a conditional error function as a combination method testing procedure to control the frequentist type I error is used. Simulation studies showed that the logistic regression model performs better than frequentist testing for the population selection problem when the subgroup should be selected. Shrinkage prior distributions tend to be more conservative than simpler normal distributions as studies that would have ended positively are stopped at interim analysis.
随着个性化医疗越来越受关注,人群选择成为当今临床开发中的一个关键主题。生物标志物扫描技术的发展使得在分析疾病中的新药反应时能够对感兴趣的亚组进行组成分析和检测。无缝适应性试验可以在中期分析时进行亚组分析,并选择最有前景的人群。我们针对无缝的II/III期试验提出了一种混合贝叶斯设计,第一阶段和第二阶段的结果分别为二元结果和事件发生时间。在这项工作中,在中期分析时,比较了包括收缩先验在内的几种先验分布,以可能选择/舍弃一个人群,并使用条件误差函数作为组合方法检验程序的最终检验来控制频率论者的I型错误。模拟研究表明,当应该选择亚组时,逻辑回归模型在人群选择问题上比频率论检验表现更好。收缩先验分布往往比简单的正态分布更保守,因为那些本应得出阳性结果的研究在中期分析时就停止了。