Suppr超能文献

自主设备上针对多目标的多模态远程传感学习

Multi-modal remote sensory learning for multi-objects over autonomous devices.

作者信息

Naseer Aysha, Almudawi Naif, Aljuaid Hanan, Alazeb Abdulwahab, AlQahtani Yahay, Algarni Asaad, Jalal Ahmad, Liu Hui

机构信息

Department of Computer Science, Air University, Islamabad, Pakistan.

Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

出版信息

Front Bioeng Biotechnol. 2025 May 20;13:1430222. doi: 10.3389/fbioe.2025.1430222. eCollection 2025.

Abstract

INTRODUCTION

There has been an increasing focus on object segmentation within remote sensing images in recent years due to advancements in remote sensing technology and the growing significance of these images in both military and civilian realms. In these situations, it is critical to accurately and quickly identify a wide variety of objects. In many computer vision applications, scene recognition in aerial-based remote sensing imagery presents a common issue.

METHOD

However, several challenging elements make this work especially difficult: (i) Different objects have different pixel densities; (ii) objects are not evenly distributed in remote sensing images; (iii) objects can appear differently depending on viewing angle and lighting conditions; and (iv) there are fluctuations in the number of objects, even the same type, in remote sensing images. Using a synergistic combination of Markov Random Field (MRF) for accurate labeling and Alex Net model for robust scene recognition, this work presents a novel method for the identification of remote sensing objects. During the labeling step, the use of MRF guarantees precise spatial contextual modeling, which improves comprehension of intricate interactions between nearby aerial objects. By simultaneously using deep learning model, the incorporation of Alex Net in the following classification phase enhances the model's capacity to identify complex patterns in aerial images and adapt to a variety of object attributes.

RESULTS

Experiments show that our method performs better than others in terms of classification accuracy and generalization, indicating its efficacy analysis on benchmark datasets such as UC Merced Land Use and AID.

DISCUSSION

Several performance measures were calculated to assess the efficacy of the suggested technique, including accuracy, precision, recall, error, and F1-Score. The assessment findings show a remarkable recognition rate of around 97.90% and 98.90%, on the AID and the UC Merced Land datasets, respectively.

摘要

引言

近年来,由于遥感技术的进步以及这些图像在军事和民用领域日益增长的重要性,对遥感图像中的目标分割的关注越来越多。在这些情况下,准确快速地识别各种目标至关重要。在许多计算机视觉应用中,基于航空的遥感图像中的场景识别是一个常见问题。

方法

然而,有几个具有挑战性的因素使得这项工作特别困难:(i)不同的目标具有不同的像素密度;(ii)目标在遥感图像中分布不均匀;(iii)目标根据视角和光照条件可能会呈现不同的外观;(iv)遥感图像中目标的数量存在波动,即使是同一类型的目标。通过将用于精确标记的马尔可夫随机场(MRF)与用于稳健场景识别的Alex Net模型进行协同组合,这项工作提出了一种识别遥感目标的新方法。在标记步骤中,使用MRF保证了精确的空间上下文建模,这提高了对附近航空目标之间复杂相互作用的理解。通过同时使用深度学习模型,在后续分类阶段纳入Alex Net增强了模型识别航空图像中复杂模式并适应各种目标属性的能力。

结果

实验表明,我们的方法在分类准确性和泛化能力方面比其他方法表现更好,这表明其在UC Merced Land Use和AID等基准数据集上的有效性分析。

讨论

计算了几个性能指标来评估所提出技术的有效性,包括准确性、精确率、召回率、误差和F1分数。评估结果表明,在AID和UC Merced Land数据集上,识别率分别达到了约97.90%和98.90%,非常显著。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf84/12130010/029c9203db0e/fbioe-13-1430222-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验