Paterson Tom, Rohrs Jennifer, Hohman Timothy J, Mapstone Mark, Meikle Peter J, Kaddurah-Daouk Rima, Levey Allan I, Hood Leroy, Funk Cory C
Fulcrum Neuroscience, Palo Alto, CA.
Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN.
bioRxiv. 2025 May 12:2024.07.23.604835. doi: 10.1101/2024.07.23.604835.
Age and APOE genotype are the strongest known risk factors for late-onset Alzheimer's disease (AD), but the mechanisms linking them to neuronal loss remain incompletely defined. Using multiomic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we propose a unified hypothesis in which two interdependent failure modes-saturation of microglial lipid flux capacity and disruption of the astrocyte-neuron lactate shuttle (ANLS) due to excess astrocytic membrane cholesterol-drive disease progression upstream of amyloid and tau pathology. Stratifying participants by cognitive score quartiles, we find consistent associations linking impaired lipid clearance, metabolic stress, and genetic variants regulating cholesterol handling. These processes appear to reinforce each other, resulting in accelerating neurodegeneration. Our hypothesis reframes AD as a systems-level collapse in metabolic coordination, rather than a purely linear pathological cascade. These insights emerged during the development of digital twin models for personalized interventions, highlighting the power of systems approaches to reveal hidden drivers of neurodegeneration.
年龄和载脂蛋白E(APOE)基因型是已知的晚发性阿尔茨海默病(AD)最强的风险因素,但将它们与神经元丢失联系起来的机制仍未完全明确。利用来自阿尔茨海默病神经影像倡议(ADNI)的多组学数据,我们提出了一个统一的假说,即两种相互依存的失效模式——小胶质细胞脂质通量能力的饱和以及由于星形胶质细胞膜胆固醇过多导致的星形胶质细胞-神经元乳酸穿梭(ANLS)的破坏——在淀粉样蛋白和tau病理上游驱动疾病进展。按认知评分四分位数对参与者进行分层,我们发现脂质清除受损、代谢应激以及调节胆固醇处理的基因变异之间存在一致的关联。这些过程似乎相互强化,导致神经退行性变加速。我们的假说将AD重新定义为代谢协调的系统层面崩溃,而非纯粹的线性病理级联反应。这些见解是在开发用于个性化干预的数字孪生模型过程中出现的,突出了系统方法揭示神经退行性变隐藏驱动因素的能力。