Suppr超能文献

利用富含伯格曼神经胶质细胞的人类小脑类器官模拟弗里德赖希共济失调。

Modeling Friedreich's ataxia with Bergmann glia-enriched human cerebellar organoids.

作者信息

Ryu Seungmi, Inman Jason, Hong Hyenjong, Jovanovic Vukasin M, Gedik Yeliz, Jethmalani Yogita, Hur Inae, Voss Ty, Lack Justin, Collins Jack, Ormanoglu Pinar, Simeonov Anton, Tristan Carlos A, Singeç Ilyas

机构信息

National Center for Advancing Translational Sciences (NCATS), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA.

National Institute of Allergy and Infectious Diseases (NIAID), Collaborative Bioinformatics Resource (NCBR), National Institutes of Health (NIH), Bethesda, MD 20892, USA.

出版信息

bioRxiv. 2025 May 16:2025.05.16.654315. doi: 10.1101/2025.05.16.654315.

Abstract

The human cerebellum is a specialized brain region that is involved in various neurological and psychiatric diseases but has been challenging to study due its complex neurodevelopment and cellular diversity. Despite the progress in generating neural tissues from human induced pluripotent stem cells (iPSCs), an organoid model that recapitulates the key features of cerebellar development has not been widely established. Here, we report the generation of a 60-day method for human cerebellar organoids (hCBOs) that is characterized by induction of rhombomere 1 (R1) cellular identity followed by derivation of neuronal and glial cell types of the cerebellum. In contrast to forebrain organoids with multiple neural rosettes and inside-out neuronal migration, hCBOs develop a SOX2+ cerebellar plate on the outermost surface of organoids with outside-in neuronal migration, which is a characteristic hallmark of cerebellar histogenesis. These hCBOs produced various other cell types including granule neurons, Purkinje cells, Golgi neurons, and deep cerebellar nuclei. By using a glial induction strategy, we generate Bergmann glial cells (BGCs) within the hCBOs that not only serve as scaffolds for granule cells migration but also enhance electrophysiological response of the hCBOs. Furthermore, by generating hCBOs from patients with Friedreich's ataxia (FRDA), we revealed abnormal disease-specific phenotypes that could be reversed by histone deacetylase (HDAC) inhibitors and gene editing by CRISPR-Cas9. Taken together, our advanced hCBO model provides new opportunities to investigate the molecular and cellular mechanisms of cerebellar ontogenesis and utilize patient-derived iPSCs for translational research.

摘要

人类小脑是一个特殊的脑区,与多种神经和精神疾病有关,但由于其复杂的神经发育和细胞多样性,对其进行研究一直具有挑战性。尽管在从人类诱导多能干细胞(iPSC)生成神经组织方面取得了进展,但能够概括小脑发育关键特征的类器官模型尚未广泛建立。在此,我们报告了一种生成人类小脑类器官(hCBO)的60天方法,其特点是诱导菱脑节1(R1)细胞身份,随后衍生出小脑的神经元和神经胶质细胞类型。与具有多个神经玫瑰花结和由内向外神经元迁移的前脑类器官不同,hCBO在类器官的最外表面形成一个SOX2+小脑板,并具有由外向内的神经元迁移,这是小脑组织发生的一个特征性标志。这些hCBO产生了各种其他细胞类型,包括颗粒神经元、浦肯野细胞、高尔基神经元和小脑深部核团。通过使用一种神经胶质诱导策略,我们在hCBO内生成了伯格曼神经胶质细胞(BGC),它们不仅作为颗粒细胞迁移的支架,还增强了hCBO的电生理反应。此外,通过从弗里德赖希共济失调(FRDA)患者中生成hCBO,我们揭示了异常的疾病特异性表型,这些表型可被组蛋白脱乙酰酶(HDAC)抑制剂和CRISPR-Cas9基因编辑逆转。综上所述,我们先进的hCBO模型为研究小脑个体发生的分子和细胞机制以及利用患者来源的iPSC进行转化研究提供了新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05de/12132547/d08f4cd7ef4a/nihpp-2025.05.16.654315v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验