Carr Nicole, Zhu Shude, Lee Kenji, Xia Ruobing, Chen Xiaomo, Perliss Alec, Moore Tirin, Chandrasekaran Chandramouli
Department of Biomedical Engineering, Boston University, Boston, 02115, MA, USA.
Department of Neurobiology, Stanford University School of Medicine, Stanford, 94305, CA, USA.
bioRxiv. 2025 May 18:2025.05.14.653875. doi: 10.1101/2025.05.14.653875.
The relationship between the structural properties of diverse neuronal populations in the monkey primary visual cortex (V1) and their functional visual processing remains a critical knowledge gap in visual neuroscience. We took advantage of high-density Neuropixels electrodes to record large populations of neurons across layers of macaque V1 and used a state-of-the-art non-linear dimensionality reduction approach on waveform shape to delineate nine putative cell classes, 4 narrow-spiking (NS), 4 broadspiking (BS) and 1 tri-phasic (TP). Then, we performed targeted analyses of laminar organization, spike amplitude, multichannel spatial features, functional properties, and network connectivity of these cell classes, to discover four fundamental aspects of the V1 microcircuit predicted by anatomical studies, but never fully demonstrated before : First, NS neurons were most concentrated in layer 4 and more numerous than parvalbumin positive neurons, consistent with studies of potassium channel expression in excitatory neurons in V1. Second, a large amplitude NS cell class in layer 4B was strongly direction selective, with multichannel waveforms consistent with a stellate morphology, which is a likely functional correlate of anatomical descriptions of neurons that project between V1 and MT. Third, an NS cell class in layer 4B showed robust bursting activity and strong orientation selectivity. Finally, cross-correlation analysis of neuron pairs revealed distinct functional interactions between cell classes. These results demonstrate that high-resolution electrophysiology enables discovery of novel relationships between structural organization and functional responses of neurons, and can inform biologically realistic microcircuit models of primate V1, perhaps even extending to all of neocortex.
猴初级视觉皮层(V1)中不同神经元群体的结构特性与其功能性视觉处理之间的关系,仍然是视觉神经科学中一个关键的知识空白。我们利用高密度神经像素电极记录猕猴V1各层中的大量神经元,并对波形形状采用一种先进的非线性降维方法来描绘九种假定的细胞类别,即4种窄峰放电(NS)、4种宽峰放电(BS)和1种三相(TP)。然后,我们对这些细胞类别的层状组织、峰电位幅度、多通道空间特征、功能特性和网络连接性进行了针对性分析,以发现解剖学研究所预测但此前从未得到充分证实的V1微电路的四个基本方面:第一,NS神经元最集中在第4层,且比小白蛋白阳性神经元数量更多,这与V1中兴奋性神经元钾通道表达的研究结果一致。第二,第4B层中的一类大幅值NS细胞具有很强的方向选择性,其多通道波形与星状形态一致,这可能是对V1和MT之间投射神经元解剖学描述的一种功能关联。第三,第4B层中的一类NS细胞表现出强烈的爆发性活动和很强的方向选择性。最后,对神经元对的互相关分析揭示了细胞类别之间不同的功能相互作用。这些结果表明,高分辨率电生理学能够发现神经元结构组织与功能反应之间的新关系,并可为灵长类V1的生物现实微电路模型提供信息,甚至可能扩展到整个新皮层。