Suppr超能文献

亚毫秒级双光子光遗传学与时间聚焦的图案化光。

Submillisecond Two-Photon Optogenetics with Temporally Focused Patterned Light.

机构信息

Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Paris Descartes University, Paris 75006, France.

Institut de la Vision, Sorbonne Université, Inserm S968, CNRS UMR7210, Paris 75012, France, and.

出版信息

J Neurosci. 2019 May 1;39(18):3484-3497. doi: 10.1523/JNEUROSCI.1785-18.2018. Epub 2019 Mar 4.

Abstract

To better examine circuit mechanisms underlying perception and behavior, researchers need tools to enable temporally precise control of action-potential generation of individual cells from neuronal ensembles. Here we demonstrate that such precision can be achieved with two-photon (2P) temporally focused computer-generated holography to control neuronal excitability at the supragranular layers of anesthetized and awake visual cortex in both male and female mice. Using 2P-guided whole-cell or cell-attached recordings in positive neurons expressing any of the three opsins ReaChR, CoChR, or ChrimsonR, we investigated the dependence of spiking activity on the opsin's channel kinetics. We found that in all cases the use of brief illumination (≤10 ms) induces spikes of millisecond temporal resolution and submillisecond precision, which were preserved upon repetitive illuminations up to tens of hertz. To reach high temporal precision, we used a large illumination spot covering the entire cell body and an amplified laser at high peak power and low excitation intensity (on average ≤0.2 mW/μm), thus minimizing the risk for nonlinear photodamage effects. Finally, by combining 2P holographic excitation with electrophysiological recordings and calcium imaging using GCaMP6s, we investigated the factors, including illumination shape and intensity, opsin distribution in the target cell, and cell morphology, which affect the spatial selectivity of single-cell and multicell holographic activation. Parallel optical control of neuronal activity with cellular resolution and millisecond temporal precision should make it easier to investigate neuronal connections and find further links between connectivity, microcircuit dynamics, and brain functions. Recent developments in the field of optogenetics has enabled researchers to probe the neuronal microcircuit with light by optically actuating genetically encoded light-sensitive opsins expressed in the target cells. Here, we applied holographic light shaping and temporal focusing to simultaneously deliver axially confined holographic patterns to opsin-positive cells in the living mouse cortex. Parallel illumination efficiently induced action potentials with high temporal resolution and precision for three opsins of different kinetics. We extended the parallel optogenetic activation at low intensity to multiple neurons and concurrently monitored their calcium dynamics. These results demonstrate fast and temporally precise control of a neuronal subpopulation, opening new opportunities for revealing circuit mechanisms underlying brain functions.

摘要

为了更好地研究感知和行为背后的电路机制,研究人员需要能够精确控制神经元集合中单个细胞产生动作电位的工具。在这里,我们展示了使用双光子(2P)时聚焦计算机生成的全息图来实现这种精确性的方法,以在麻醉和清醒的雄性和雌性小鼠视觉皮层的颗粒上层控制神经元兴奋性。使用 2P 引导的全细胞或细胞贴附记录,在表达任何三种光感受器 ReaChR、CoChR 或 ChrimsonR 的阳性神经元中,我们研究了尖峰活动对光感受器通道动力学的依赖性。我们发现,在所有情况下,使用短暂的光照(≤10ms)都会诱导具有毫秒时间分辨率和亚毫秒精度的尖峰,并且在重复照明高达数十赫兹时仍能保持这种精度。为了达到高时间精度,我们使用了一个大的照明光斑覆盖整个细胞体,并使用高峰值功率和低激发强度(平均≤0.2mW/μm)的放大激光,从而将非线性光损伤效应的风险降到最低。最后,通过将 2P 全息激发与使用 GCaMP6s 的电生理记录和钙成像相结合,我们研究了影响单细胞和多细胞全息激活空间选择性的因素,包括照明形状和强度、目标细胞中光感受器的分布以及细胞形态。具有细胞分辨率和毫秒时间精度的神经元活动的并行光控应该更容易研究神经元连接,并在连接、微电路动力学和大脑功能之间找到进一步的联系。光遗传学领域的最新进展使研究人员能够通过光学激活在目标细胞中表达的遗传编码的光敏感光感受器来用光探测神经元微电路。在这里,我们应用全息光整形和时间聚焦,同时向活体小鼠皮层中光感受器阳性细胞提供轴向限制的全息图案。并行照明有效地以高时间分辨率和精度诱导具有不同动力学的三个光感受器的动作电位。我们将低强度的并行光遗传激活扩展到多个神经元,并同时监测它们的钙动力学。这些结果表明对神经元亚群进行快速和精确的时间控制,为揭示大脑功能背后的电路机制开辟了新的机会。

相似文献

1
Submillisecond Two-Photon Optogenetics with Temporally Focused Patterned Light.
J Neurosci. 2019 May 1;39(18):3484-3497. doi: 10.1523/JNEUROSCI.1785-18.2018. Epub 2019 Mar 4.
2
Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos.
J Neurosci. 2017 Nov 1;37(44):10679-10689. doi: 10.1523/JNEUROSCI.1246-17.2017. Epub 2017 Oct 2.
5
Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics.
Nature. 2019 May;569(7756):413-417. doi: 10.1038/s41586-019-1166-7. Epub 2019 May 1.
6
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
10
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.

引用本文的文献

1
Multiphoton Neurophotonics: Recent Advances in Imaging and Manipulating Neuronal Circuits.
ACS Photonics. 2025 Apr 4;12(7):3296-3318. doi: 10.1021/acsphotonics.4c02101. eCollection 2025 Jul 16.
2
3
Tunable metafibers: remote spatial focus control using 3D nanoprinted holograms on dual-core fibers.
Light Sci Appl. 2025 Jul 7;14(1):237. doi: 10.1038/s41377-025-01903-0.
6
Advanced remote focus control in multicore meta-fibers through 3D nanoprinted phase-only holograms.
Nat Commun. 2025 Jan 8;16(1):507. doi: 10.1038/s41467-024-55805-7.
7
Functional networks of inhibitory neurons orchestrate synchrony in the hippocampus.
PLoS Biol. 2024 Oct 14;22(10):e3002837. doi: 10.1371/journal.pbio.3002837. eCollection 2024 Oct.
10
Scanless two-photon voltage imaging.
Nat Commun. 2024 Jun 14;15(1):5095. doi: 10.1038/s41467-024-49192-2.

本文引用的文献

1
Temperature Rise under Two-Photon Optogenetic Brain Stimulation.
Cell Rep. 2018 Jul 31;24(5):1243-1253.e5. doi: 10.1016/j.celrep.2018.06.119.
3
Precise multimodal optical control of neural ensemble activity.
Nat Neurosci. 2018 Jun;21(6):881-893. doi: 10.1038/s41593-018-0139-8. Epub 2018 Apr 30.
4
Towards circuit optogenetics.
Curr Opin Neurobiol. 2018 Jun;50:179-189. doi: 10.1016/j.conb.2018.03.008. Epub 2018 Apr 7.
5
Two-Photon Bidirectional Control and Imaging of Neuronal Excitability with High Spatial Resolution In Vivo.
Cell Rep. 2018 Mar 13;22(11):3087-3098. doi: 10.1016/j.celrep.2018.02.063.
7
Temporally precise single-cell-resolution optogenetics.
Nat Neurosci. 2017 Dec;20(12):1796-1806. doi: 10.1038/s41593-017-0018-8. Epub 2017 Nov 13.
8
Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT).
Nat Commun. 2017 Oct 31;8(1):1228. doi: 10.1038/s41467-017-01031-3.
9
Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos.
J Neurosci. 2017 Nov 1;37(44):10679-10689. doi: 10.1523/JNEUROSCI.1246-17.2017. Epub 2017 Oct 2.
10
A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions.
Neuron. 2017 Sep 13;95(6):1420-1432.e5. doi: 10.1016/j.neuron.2017.08.036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验