Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Paris Descartes University, Paris 75006, France.
Institut de la Vision, Sorbonne Université, Inserm S968, CNRS UMR7210, Paris 75012, France, and.
J Neurosci. 2019 May 1;39(18):3484-3497. doi: 10.1523/JNEUROSCI.1785-18.2018. Epub 2019 Mar 4.
To better examine circuit mechanisms underlying perception and behavior, researchers need tools to enable temporally precise control of action-potential generation of individual cells from neuronal ensembles. Here we demonstrate that such precision can be achieved with two-photon (2P) temporally focused computer-generated holography to control neuronal excitability at the supragranular layers of anesthetized and awake visual cortex in both male and female mice. Using 2P-guided whole-cell or cell-attached recordings in positive neurons expressing any of the three opsins ReaChR, CoChR, or ChrimsonR, we investigated the dependence of spiking activity on the opsin's channel kinetics. We found that in all cases the use of brief illumination (≤10 ms) induces spikes of millisecond temporal resolution and submillisecond precision, which were preserved upon repetitive illuminations up to tens of hertz. To reach high temporal precision, we used a large illumination spot covering the entire cell body and an amplified laser at high peak power and low excitation intensity (on average ≤0.2 mW/μm), thus minimizing the risk for nonlinear photodamage effects. Finally, by combining 2P holographic excitation with electrophysiological recordings and calcium imaging using GCaMP6s, we investigated the factors, including illumination shape and intensity, opsin distribution in the target cell, and cell morphology, which affect the spatial selectivity of single-cell and multicell holographic activation. Parallel optical control of neuronal activity with cellular resolution and millisecond temporal precision should make it easier to investigate neuronal connections and find further links between connectivity, microcircuit dynamics, and brain functions. Recent developments in the field of optogenetics has enabled researchers to probe the neuronal microcircuit with light by optically actuating genetically encoded light-sensitive opsins expressed in the target cells. Here, we applied holographic light shaping and temporal focusing to simultaneously deliver axially confined holographic patterns to opsin-positive cells in the living mouse cortex. Parallel illumination efficiently induced action potentials with high temporal resolution and precision for three opsins of different kinetics. We extended the parallel optogenetic activation at low intensity to multiple neurons and concurrently monitored their calcium dynamics. These results demonstrate fast and temporally precise control of a neuronal subpopulation, opening new opportunities for revealing circuit mechanisms underlying brain functions.
为了更好地研究感知和行为背后的电路机制,研究人员需要能够精确控制神经元集合中单个细胞产生动作电位的工具。在这里,我们展示了使用双光子(2P)时聚焦计算机生成的全息图来实现这种精确性的方法,以在麻醉和清醒的雄性和雌性小鼠视觉皮层的颗粒上层控制神经元兴奋性。使用 2P 引导的全细胞或细胞贴附记录,在表达任何三种光感受器 ReaChR、CoChR 或 ChrimsonR 的阳性神经元中,我们研究了尖峰活动对光感受器通道动力学的依赖性。我们发现,在所有情况下,使用短暂的光照(≤10ms)都会诱导具有毫秒时间分辨率和亚毫秒精度的尖峰,并且在重复照明高达数十赫兹时仍能保持这种精度。为了达到高时间精度,我们使用了一个大的照明光斑覆盖整个细胞体,并使用高峰值功率和低激发强度(平均≤0.2mW/μm)的放大激光,从而将非线性光损伤效应的风险降到最低。最后,通过将 2P 全息激发与使用 GCaMP6s 的电生理记录和钙成像相结合,我们研究了影响单细胞和多细胞全息激活空间选择性的因素,包括照明形状和强度、目标细胞中光感受器的分布以及细胞形态。具有细胞分辨率和毫秒时间精度的神经元活动的并行光控应该更容易研究神经元连接,并在连接、微电路动力学和大脑功能之间找到进一步的联系。光遗传学领域的最新进展使研究人员能够通过光学激活在目标细胞中表达的遗传编码的光敏感光感受器来用光探测神经元微电路。在这里,我们应用全息光整形和时间聚焦,同时向活体小鼠皮层中光感受器阳性细胞提供轴向限制的全息图案。并行照明有效地以高时间分辨率和精度诱导具有不同动力学的三个光感受器的动作电位。我们将低强度的并行光遗传激活扩展到多个神经元,并同时监测它们的钙动力学。这些结果表明对神经元亚群进行快速和精确的时间控制,为揭示大脑功能背后的电路机制开辟了新的机会。