Suppr超能文献

高效合并和验证来自多个模型的苏木精和伊红(H&E)染色切片中基于深度学习的细胞核分割结果

Efficient merging and validation of deep learning-based nuclei segmentations in H&E slides from multiple models.

作者信息

Balan Jagadheshwar, McDonnell Shannon K, Fogarty Zachary, Larson Nicholas B

机构信息

Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.

出版信息

J Pathol Inform. 2025 Apr 15;17:100443. doi: 10.1016/j.jpi.2025.100443. eCollection 2025 Apr.

Abstract

Characterizing cellular composition in tissue samples offers fundamental insights into functional and biological processes. Understanding the abundance or lack of specific cell types, such as inflammatory cells in the context of microenvironments such as tumor can help guide disease progression and personalized medicine. Several clinical laboratory methods to characterize the cellular composition are limited by scalability and high-costs. Digitizing pathology slides and applying deep learning (DL) models have enabled efficient and cost-effective nuclei segmentation and cell type quantification; however, the DL-models are limited by their inability to segment specific cell types and specific models may be more effective than others at certain tasks. Consequently, there remains a need for methods that leverage the strengths of multiple models to efficiently integrate nuclei segmentation for various cell types. In this study, we propose a novel solution for integrating nuclei segmentation from multiple DL-methods on hematoxylin and eosin slides from 471 normal prostate samples and highlight the limitations of using a single DL-method. We validate the DL-derived cell type proportions, by comparing against estimates from a manual pathologist review and show that the integrated approach results in higher concordance over the individual models. We further validate the derived cell type proportions from the DL-methods by their ability to explain the variance of RNA gene expression. The integrated approach yields robust cell type proportions that explain the variance of the gene expression with 12% and 22% relative improvement than current state-of-the-art model and manual pathologist review, respectively. The subset of 403 genes with high explained variation (>30%) by epithelial proportion were significantly enriched for relevant biological pathways. These findings indicate that ensemble approaches to nuclei segmentation and cell-type classification may provide more accurate representations of cellular composition from digitized slides.

摘要

表征组织样本中的细胞组成可为功能和生物学过程提供基本见解。了解特定细胞类型的丰度或缺失情况,例如肿瘤等微环境中的炎性细胞,有助于指导疾病进展和个性化医疗。几种用于表征细胞组成的临床实验室方法受到可扩展性和高成本的限制。对病理切片进行数字化处理并应用深度学习(DL)模型能够实现高效且经济高效的细胞核分割和细胞类型定量;然而,DL模型存在无法分割特定细胞类型的局限性,并且特定模型在某些任务上可能比其他模型更有效。因此,仍然需要利用多种模型的优势来有效整合各种细胞类型的细胞核分割的方法。在本研究中,我们针对来自471个正常前列腺样本的苏木精和伊红染色切片,提出了一种整合多种DL方法进行细胞核分割的新解决方案,并突出了使用单一DL方法的局限性。我们通过与病理学家手动评估的估计值进行比较,验证了DL衍生的细胞类型比例,并表明整合方法比单个模型具有更高的一致性。我们还通过其解释RNA基因表达差异的能力,进一步验证了DL方法衍生的细胞类型比例。整合方法产生了稳健的细胞类型比例,分别比当前最先进的模型和病理学家手动评估解释基因表达差异的能力提高了12%和22%。上皮比例对403个具有高解释变异(>30%)的基因子集进行的相关生物学途径显著富集。这些发现表明,细胞核分割和细胞类型分类的集成方法可能能从数字化切片中更准确地呈现细胞组成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5fc/12130990/db2b83f3d193/ga1.jpg

相似文献

1
Efficient merging and validation of deep learning-based nuclei segmentations in H&E slides from multiple models.
J Pathol Inform. 2025 Apr 15;17:100443. doi: 10.1016/j.jpi.2025.100443. eCollection 2025 Apr.
2
Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study.
Gastric Cancer. 2023 Sep;26(5):708-720. doi: 10.1007/s10120-023-01398-x. Epub 2023 Jun 3.
3
CryoNuSeg: A dataset for nuclei instance segmentation of cryosectioned H&E-stained histological images.
Comput Biol Med. 2021 May;132:104349. doi: 10.1016/j.compbiomed.2021.104349. Epub 2021 Mar 22.
4
Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases.
J Pathol Inform. 2016 Jul 26;7:29. doi: 10.4103/2153-3539.186902. eCollection 2016.
6
Colorectal Cancer Detection Based on Deep Learning.
J Pathol Inform. 2020 Aug 21;11:28. doi: 10.4103/jpi.jpi_68_19. eCollection 2020.
8
HoLy-Net: Segmentation of histological images of diffuse large B-cell lymphoma.
Comput Biol Med. 2024 Mar;170:107978. doi: 10.1016/j.compbiomed.2024.107978. Epub 2024 Jan 11.
10
Automation-assisted cervical cancer screening in manual liquid-based cytology with hematoxylin and eosin staining.
Cytometry A. 2014 Mar;85(3):214-30. doi: 10.1002/cyto.a.22407. Epub 2013 Dec 20.

本文引用的文献

1
Generation of synthetic whole-slide image tiles of tumours from RNA-sequencing data via cascaded diffusion models.
Nat Biomed Eng. 2025 Mar;9(3):320-332. doi: 10.1038/s41551-024-01193-8. Epub 2024 Mar 21.
3
Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes.
Genome Biol. 2023 Aug 1;24(1):177. doi: 10.1186/s13059-023-03016-6.
5
A Comprehensive Overview of RNA Deconvolution Methods and Their Application.
Mol Cells. 2023 Feb 28;46(2):99-105. doi: 10.14348/molcells.2023.2178.
6
Merging nucleus datasets by correlation-based cross-training.
Med Image Anal. 2023 Feb;84:102705. doi: 10.1016/j.media.2022.102705. Epub 2022 Dec 7.
7
TIAToolbox as an end-to-end library for advanced tissue image analytics.
Commun Med (Lond). 2022 Sep 24;2:120. doi: 10.1038/s43856-022-00186-5. eCollection 2022.
9
MoNuSAC2020: A Multi-Organ Nuclei Segmentation and Classification Challenge.
IEEE Trans Med Imaging. 2021 Dec;40(12):3413-3423. doi: 10.1109/TMI.2021.3085712. Epub 2021 Nov 30.
10
Nuclear Segmentation in Histopathological Images Using Two-Stage Stacked U-Nets With Attention Mechanism.
Front Bioeng Biotechnol. 2020 Oct 26;8:573866. doi: 10.3389/fbioe.2020.573866. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验