Pasquini Juana M, Correale Jorge D
Departamento de Química Biológica e Instituto de Química y Fisiscoquímica Biológica IQUIFIB Facultad de Farmacia y Bioquímica Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.
Instituto de Química y Fisicoquímica Biológica IQUIFIB Facultad de Farmacia y Bioquímica Universidad de Buenos Aires-CONICET Argentina y, Buenos Aires, Argentina.
Discov Immunol. 2025 Apr 28;4(1):kyaf005. doi: 10.1093/discim/kyaf005. eCollection 2025.
Oligodendrocytes (OGDs) are well-established cells in the central nervous system (CNS), primarily recognized for their role in myelination. However, emerging evidence suggests intrinsic differences among OGDs that may lead to diverse functions. OGDs heterogeneity could depend on their origin, location, age, and the presence of pathology. These variations indicate that specific populations of OGDs can modulate local immune responses and interact with other immune cells beyond their role in myelination. OGDs express major histocompatibility complex class I and class II molecules and can thus present endogenous and exogenous antigens to CD8 + and CD4 + T cells, respectively. In physiological conditions, OGDs release factors that maintain microglial quiescence and support homeostatic functions. However, during neuroinflammation, OGDs interact with microglia, astrocytes, and peripheral immune cells infiltrating the CNS, which may change their signaling profiles. In inflammatory conditions, OGDs demonstrate their active role in CNS immunology by producing a range of pro-inflammatory cytokines and chemokines. These factors are critical to the regulation of immune cell migration and activation within the CNS. Conversely, OGDs can also release anti-inflammatory factors, such as brain-derived neurotrophic factors, which help mitigate excessive inflammatory responses. Research into how OGDs affect and are affected by neighboring cells may unveil new therapeutic targets and strategies. The dual roles of OGDs in immunology and CNS function present both opportunities and challenges for advancing our understanding and treatment of CNS disorders.
少突胶质细胞(OGDs)是中枢神经系统(CNS)中已被充分认知的细胞,主要因其在髓鞘形成中的作用而被识别。然而,新出现的证据表明少突胶质细胞之间存在内在差异,这可能导致其功能多样。少突胶质细胞的异质性可能取决于它们的起源、位置、年龄以及病理状态的存在。这些差异表明,特定群体的少突胶质细胞可以调节局部免疫反应,并与其他免疫细胞相互作用,而不仅仅局限于它们在髓鞘形成中的作用。少突胶质细胞表达主要组织相容性复合体I类和II类分子,因此可以分别将内源性和外源性抗原呈递给CD8 +和CD4 + T细胞。在生理条件下,少突胶质细胞释放维持小胶质细胞静止并支持稳态功能的因子。然而,在神经炎症期间,少突胶质细胞与小胶质细胞、星形胶质细胞以及浸润中枢神经系统的外周免疫细胞相互作用,这可能会改变它们的信号传导模式。在炎症条件下,少突胶质细胞通过产生一系列促炎细胞因子和趋化因子,在中枢神经系统免疫学中发挥积极作用。这些因子对于调节中枢神经系统内免疫细胞的迁移和激活至关重要。相反,少突胶质细胞也可以释放抗炎因子,如脑源性神经营养因子,有助于减轻过度的炎症反应。研究少突胶质细胞如何影响邻近细胞以及如何受到邻近细胞的影响,可能会揭示新的治疗靶点和策略。少突胶质细胞在免疫学和中枢神经系统功能中的双重作用,为推进我们对中枢神经系统疾病的理解和治疗带来了机遇和挑战。
Discov Immunol. 2025-4-28
Best Pract Res Clin Anaesthesiol. 2010-11-29
Front Cell Neurosci. 2025-4-7
Stem Cell Res Ther. 2021-1-7
Immunology. 2014-3
Front Immunol. 2020
Neurotherapeutics. 2015-10
Curr Top Microbiol Immunol. 2001
Trends Immunol. 2024-10
Mol Psychiatry. 2025-1
Neural Regen Res. 2025-5-1