Weberling Lukas Damian, Ochs Andreas, Benovoy Mitchel, Aus dem Siepen Fabian, Salatzki Janek, Giannitsis Evangelos, Duan Chong, Maresca Kevin, Zhang Yao, Möller Jan, Friedrich Silke, Schönland Stefan, Meder Benjamin, Friedrich Matthias G, Frey Norbert, André Florian
Department of Cardiology, Angiology and Pneumology (L.D.W., A.O., F.a.d.S., J.S., E.G., B.M., M.G.F., N.F., F.A.), Heidelberg University Hospital, Germany.
German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Partner Site Heidelberg/Mannheim (L.D.W., A.O., F.a.d.S., J.S., E.G., B.M., N.F., F.A.).
Circ Cardiovasc Imaging. 2025 Jul;18(7):e017761. doi: 10.1161/CIRCIMAGING.124.017761. Epub 2025 Jun 4.
Cardiac amyloidosis is associated with poor outcomes and is caused by the interstitial deposition of misfolded proteins, typically ATTR (transthyretin) or AL (light chains). Although specific therapies during early disease stages exist, the diagnosis is often only established at an advanced stage. Cardiovascular magnetic resonance (CMR) is the gold standard for imaging suspected myocardial disease. However, differentiating cardiac amyloidosis from hypertrophic cardiomyopathy may be challenging, and a reliable method for an image-based classification of amyloidosis subtypes is lacking. This study sought to investigate a CMR machine learning (ML) algorithm to identify and distinguish cardiac amyloidosis.
This retrospective, multicenter, multivendor feasibility study included consecutive patients diagnosed with hypertrophic cardiomyopathy or AL/ATTR amyloidosis and healthy volunteers. Standard clinical information, semiautomated CMR imaging data, and qualitative CMR features were integrated into a trained ML algorithm.
Four hundred participants (95 healthy, 94 hypertrophic cardiomyopathy, 95 AL, and 116 ATTR) from 56 institutions were included (269 men aged 58.5 [48.4-69.4] years). A 3-stage ML screening cascade sequentially differentiated healthy volunteers from patients, then hypertrophic cardiomyopathy from amyloidosis, and then AL from ATTR. The ML algorithm resulted in an accurate differentiation at each step (area under the curve, 1.0, 0.99, and 0.92, respectively). After reducing included data to demographics and imaging data alone, the performance remained excellent (area under the curve, 0.99, 0.98, and 0.88, respectively), even after removing late gadolinium enhancement imaging data from the model (area under the curve, 1.0, 0.95, 0.86, respectively).
A trained ML model using semiautomated CMR imaging data and patient demographics can accurately identify cardiac amyloidosis and differentiate subtypes.
心脏淀粉样变性与不良预后相关,由错误折叠蛋白的间质沉积引起,通常为ATTR(转甲状腺素蛋白)或AL(轻链)。尽管在疾病早期阶段存在特定疗法,但诊断往往在晚期才得以确立。心血管磁共振(CMR)是疑似心肌疾病成像的金标准。然而,区分心脏淀粉样变性与肥厚型心肌病可能具有挑战性,且缺乏一种基于图像的淀粉样变性亚型分类的可靠方法。本研究旨在探究一种CMR机器学习(ML)算法以识别和区分心脏淀粉样变性。
这项回顾性、多中心、多厂商可行性研究纳入了连续诊断为肥厚型心肌病或AL/ATTR淀粉样变性的患者以及健康志愿者。标准临床信息、半自动CMR成像数据和定性CMR特征被整合到一个经过训练的ML算法中。
来自56家机构的400名参与者(95名健康者、94名肥厚型心肌病患者、95名AL患者和116名ATTR患者)被纳入研究(269名男性,年龄58.5[48.4 - 69.4]岁)。一个3阶段的ML筛查级联依次将健康志愿者与患者区分开来,然后将肥厚型心肌病与淀粉样变性区分开来,接着将AL与ATTR区分开来。ML算法在每个步骤都实现了准确区分(曲线下面积分别为1.0、0.99和0.92)。在仅将纳入数据减少到人口统计学和成像数据后,即使从模型中去除延迟钆增强成像数据,性能仍然优异(曲线下面积分别为0.99、0.98和0.88)(曲线下面积分别为1.0、0.95、0.86)。
使用半自动CMR成像数据和患者人口统计学信息训练的ML模型能够准确识别心脏淀粉样变性并区分亚型。