Suppr超能文献

使用机器学习检测肥厚型心肌病患者的延迟钆增强

Detection of late gadolinium enhancement in patients with hypertrophic cardiomyopathy using machine learning.

作者信息

Akita Keitaro, Suwa Kenichiro, Ohno Kazuto, Weiner Shepard D, Tower-Rader Albree, Fifer Michael A, Maekawa Yuichiro, Shimada Yuichi J

机构信息

Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.

Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.

出版信息

Int J Cardiol. 2025 Feb 15;421:132911. doi: 10.1016/j.ijcard.2024.132911. Epub 2024 Dec 18.

Abstract

BACKGROUND

Late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR) in hypertrophic cardiomyopathy (HCM) typically represents myocardial fibrosis and may lead to fatal ventricular arrhythmias. However, CMR is resource-intensive and sometimes contraindicated. Thus, in patients with HCM, we aimed to detect LGE on CMR by applying machine learning (ML) algorithm to clinical parameters.

METHODS AND RESULTS

In this trans-Pacific multicenter study of HCM, a ML model was developed to distinguish the presence or absence of LGE on CMR by ridge classification method using 22 clinical parameters including 9 echocardiographic data. Among 742 patients in this cohort, the ML model was constructed in 2 institutions in the United States (training set, n = 554) and tested using data from an institution in Japan (test set, n = 188). LGE was detected in 299 patients (54%) in the training set and 76 patients (40%) in the test set. In the test set, the area under the receiver-operating-characteristic curve (AUC) of the ML model derived from the training set was 0.77 (95% confidence interval [CI] 0.70-0.84). When compared with a reference model constructed with 3 conventional risk factors for LGE on CMR (AUC 0.69 [95% CI 0.61-0.77]), the ML model outperformed the reference model (DeLong's test P = 0.01).

CONCLUSIONS

This trans-Pacific study demonstrates that ML analysis of clinical parameters can distinguish the presence of LGE on CMR in patients with HCM. Our ML model would help physicians identify patients with HCM in whom the pre-test probability of LGE is high, and therefore CMR will have higher utility.

摘要

背景

肥厚型心肌病(HCM)患者心脏磁共振成像(CMR)中的延迟钆增强(LGE)通常代表心肌纤维化,并可能导致致命性室性心律失常。然而,CMR资源消耗大,有时还存在禁忌证。因此,对于HCM患者,我们旨在通过将机器学习(ML)算法应用于临床参数来检测CMR上的LGE。

方法和结果

在这项跨太平洋的HCM多中心研究中,开发了一种ML模型,通过岭分类方法,利用包括9项超声心动图数据在内的22项临床参数来区分CMR上LGE的有无。在该队列的742例患者中,ML模型在美国的2家机构构建(训练集,n = 554),并使用来自日本一家机构的数据进行测试(测试集,n = 188)。训练集中299例患者(54%)检测到LGE,测试集中76例患者(40%)检测到LGE。在测试集中,源自训练集的ML模型的受试者操作特征曲线下面积(AUC)为0.77(95%置信区间[CI] 0.70 - 0.84)。与基于CMR上LGE的3个传统危险因素构建的参考模型(AUC 0.69 [95% CI 0.61 - 0.77])相比,ML模型的表现优于参考模型(德龙检验P = 0.01)。

结论

这项跨太平洋研究表明,对临床参数进行ML分析可以区分HCM患者CMR上LGE的存在情况。我们的ML模型将有助于医生识别LGE预测试概率较高的HCM患者,因此CMR将具有更高的实用性。

相似文献

本文引用的文献

5
7
Prospects for remodeling the hypertrophic heart with myosin modulators.使用肌球蛋白调节剂重塑肥厚型心脏的前景。
Front Cardiovasc Med. 2022 Oct 18;9:1051564. doi: 10.3389/fcvm.2022.1051564. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验