Bourtsoukidis Efstratios, Guenther Alex, Wang Hui, Economou Theo, Lazoglou Georgia, Christodoulou Aliki, Christoudias Theo, Nölscher Anke, Yañez-Serrano Ana M, Peñuelas Josep
Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus.
Department of Earth System Science, University of California, Irvine, USA.
Glob Chang Biol. 2025 Jun;31(6):e70258. doi: 10.1111/gcb.70258.
Air temperature is a critical regulator of ecosystem functions, including the release of biogenic volatile organic compounds (BVOCs) that mediate biosphere-atmosphere interactions. Among these, sesquiterpenes (SQTs) stand out for their dual role as ecologically significant compounds and highly reactive atmospheric constituents. Despite the inherently complex relationship between temperature and biogenic emissions, global emission estimates rely on simplistic parameterizations, assuming a fixed exponential response across all ecosystems and environmental conditions. Here, we synthesize two decades (1997-2019) of SQT emission studies, uncovering significant variability in temperature responses and basal emission rates driven by plant functional types (PFTs) and diverse environmental co-factors. When PFT-dependent parameterizations are integrated into emission-chemistry simulations, the results reveal sensitive feedbacks on atmospheric processes, including ground-level ozone (O) production and secondary organic aerosol (SOA) formation. Surprisingly, we identify a statistically significant decline in SQT temperature responses over time, suggesting that evolving environmental changes are reshaping the fundamental relationship between temperature and SQT emissions. This meta-analysis highlights the temperature sensitivity of sesquiterpenes (β) as a key parameter at the interface of the biosphere, abiotic and biotic environmental change, and atmospheric processes, with cascading effects on air quality and climate. Our findings emphasize the potential to consider β as a "volatile stressometer" for ecosystem-atmosphere interactions, where environmental stresses regulate the emission responses, with cascading effects on atmospheric chemistry and wider implications for future climate-vegetation feedbacks.
气温是生态系统功能的关键调节因子,包括介导生物圈与大气相互作用的生物源挥发性有机化合物(BVOCs)的释放。其中,倍半萜烯(SQTs)因其作为具有生态意义的化合物和高活性大气成分的双重作用而脱颖而出。尽管温度与生物源排放之间存在内在的复杂关系,但全球排放估算依赖于简单的参数化方法,假设在所有生态系统和环境条件下都有固定的指数响应。在此,我们综合了二十年(1997 - 2019年)的倍半萜烯排放研究,发现由植物功能类型(PFTs)和多种环境协变量驱动的温度响应和基础排放率存在显著差异。当将依赖于植物功能类型的参数化方法纳入排放 - 化学模拟时,结果揭示了对大气过程的敏感反馈,包括地面臭氧(O)生成和二次有机气溶胶(SOA)形成。令人惊讶的是,我们发现倍半萜烯的温度响应随时间在统计上有显著下降,这表明不断演变的环境变化正在重塑温度与倍半萜烯排放之间的基本关系。这项荟萃分析突出了倍半萜烯的温度敏感性(β)作为生物圈、非生物和生物环境变化以及大气过程界面的关键参数,对空气质量和气候具有连锁效应。我们的研究结果强调了将β视为生态系统 - 大气相互作用的“挥发性压力计”的潜力,其中环境压力调节排放响应,对大气化学具有连锁效应,并对未来气候 - 植被反馈有更广泛的影响。