Chen Xuan-Rong, He Zhang-Ni, Qian Yin, Wei Wei, Tian Zheng-Fang, Ren Xiao-Ming
State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.
School of Chemistry & Environmental Engineering and Instrumental Analysis Center, Yancheng Teachers University, Yancheng, 224007, P. R. China.
Adv Sci (Weinh). 2025 Sep;12(33):e01925. doi: 10.1002/advs.202501925. Epub 2025 Jun 4.
Materials that exhibit controllable changes in electrical, magnetic, or spontaneous strain properties, particularly those that couple these functionalities simultaneously, hold significant potential for technological applications. In this study, a 1D phase transition ion-pair compound is investigated, triethylmethylammonium bis(1,2-maleonitriledithiolato)nickelate (abbr. [EtMeN][Ni(mnt)], 1), composed of flexible EtMeN cation and planar radical [Ni(mnt)] anion. This salt undergoes a paraelastic-ferroelastic phase transition at ≈233/224 K (on heating/cooling), driven by spin-lattice interactions. Importantly, the phase transition couples spontaneous strain, bistable magnetism with switchable dielectric properties. Another distinctive feature of 1 is its pronounced dielectric anisotropy and high dielectric permittivity, which arise due to a barrier layer capacitor effect due to cation displacement polarization and significant electron polarization of the highly conjugated anions. These findings provide a versatile molecular design strategy for developing magnetoelectric and mechanically multifunctional materials, with promising applications in next-generation electronic and smart devices that leverage coupled physical properties.
展现出电学、磁学或自发应变特性可控变化的材料,尤其是那些能同时耦合这些功能的材料,在技术应用方面具有巨大潜力。在本研究中,对一种一维相变离子对化合物进行了研究,即三乙甲基铵双(1,2-马来二腈二硫醇)镍酸盐(简称[EtMeN][Ni(mnt)],1),它由柔性的EtMeN阳离子和平面自由基[Ni(mnt)]阴离子组成。该盐在自旋-晶格相互作用的驱动下,于约233/224 K(加热/冷却时)经历顺弹-铁弹相变。重要的是,该相变耦合了自发应变、双稳态磁性和可切换的介电特性。1的另一个显著特征是其明显的介电各向异性和高介电常数,这是由于阳离子位移极化和高度共轭阴离子的显著电子极化导致的势垒层电容效应引起的。这些发现为开发磁电和机械多功能材料提供了一种通用的分子设计策略,在利用耦合物理特性的下一代电子和智能设备中具有广阔的应用前景。