Suppr超能文献

具有D形双芯光子晶体光纤设计的机器学习增强型表面等离子体共振传感器

Machine Learning-Enhanced Surface Plasmon Resonance Sensor with D-Shaped Dual-Core Photonic Crystal Fiber Design.

作者信息

Hamzaoui Assia, Aouiche Abdelaziz, Gouder Soraya, Abdellatif Houssam Eddine, Khan Shan Ali, Belaadi Ahmed

机构信息

Department of Electronics and Telecommunications, Faculty of Science and Technology, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria.

Laboratory of Mathematics, Informatics and Systems (LAMIS), Tebessa, Algeria.

出版信息

J Fluoresc. 2025 Jun 4. doi: 10.1007/s10895-025-04384-x.

Abstract

A D-shaped dual-core surface plasmon resonance (SPR) sensor based on photonic crystal fibers (PCFs) has been created, and its sensing capabilities were evaluated through the finite element method (FEM). The design features a square lattice arrangement of air holes, with two central holes removed to form a D-shaped dual-core structure. The sensor's performance was assessed using both wavelength and amplitude interrogation approaches. It achieved a maximum wavelength sensitivity of 16,000 nm/RIU for y-polarized light at an analyte refractive index (RI) of 1.38, along with a peak amplitude sensitivity of 765.21 RIU at the same RI, and a wavelength resolution of 2.5 × 10 RIU. Furthermore, machine learning (ML) techniques, particularly artificial neural networks (ANN), were employed to predict confinement loss (CL) with high accuracy, without the need for the imaginary component of the effective RI. For an RI of 1.32, the ANN model achieved a mean squared error (MSE) of 3.5363 × 10, showcasing the model's reliability in forecasting sensor performance.

摘要

一种基于光子晶体光纤(PCF)的D形双核表面等离子体共振(SPR)传感器已被制造出来,并通过有限元方法(FEM)对其传感能力进行了评估。该设计采用气孔的方形晶格排列,去除两个中心孔以形成D形双核结构。使用波长和幅度询问方法评估了传感器的性能。在分析物折射率(RI)为1.38时,对于y偏振光,其实现了16000 nm/RIU的最大波长灵敏度,在相同RI下峰值幅度灵敏度为765.21 RIU,波长分辨率为2.5×10 RIU。此外,机器学习(ML)技术,特别是人工神经网络(ANN),被用于高精度预测限制损耗(CL),而无需有效RI的虚部。对于RI为1.32,ANN模型的均方误差(MSE)为3.5363×10,展示了该模型在预测传感器性能方面的可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验