Meena Ramcharan, Dhaka Rajendra S
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Material Science Division, Inter-University Accelerator Center, Aruna Asaf Ali Road, New Delhi, 110067, India.
Small. 2025 Aug;21(32):e2501197. doi: 10.1002/smll.202501197. Epub 2025 Jun 4.
The structural, resistivity, impedance, and dielectric studies of isovalent substituted NaZrTiSiPO (x = 0.1-0.4) NASICON type solid electrolyte materials is reported. The Rietveld refinement of X-ray diffraction patterns shows the monoclinic phase with space group of C 2/c for all the samples. The resistivity analysis shows the Arrhenius-type thermal conduction with an increase in activation energy with doping is explained based on decreased unit cell volume. Maxwell-Wagner-Sillars (MWS) relaxation and space charge or interfacial polarization models are used to explain the frequency and temperature-dependent variations of electric permittivity. The double relaxation peaks in the dielectric loss data show the two types of relaxation mechanisms of different activation energy. The real ( ) and imaginary ( ) parts of permittivity are fitted using the modified Cole-Cole equation, including the conductivity term, which show the non-Debye type relaxation over the measured frequency and temperature range. The impedance analysis shows the contributions from grain and grain boundary relaxation. The fitting performed using the impedance and constant-phase element (CPE) confirm the non-Debye type relaxation. Moreover, the electric modulus analysis confirms the ionic nature having thermally activated relaxation and the scaling analysis shows a similar type of relaxation in the measured temperature range. The modified power law is used to understand the frequency dependence of a.c. conductivity data. The temperature dependence of exponent (s) in modified power law suggests the change in the conduction mechanism from near small polaron tunneling (NSPT) to correlated barrier hopping (CBH) above room temperature. The larger values of ϵ indicate these materials as a potential candidate for charge-storage devices.
报道了等价取代的NaZrTiSiPO(x = 0.1 - 0.4)NASICON型固体电解质材料的结构、电阻率、阻抗和介电研究。X射线衍射图谱的Rietveld精修表明,所有样品均为单斜晶相,空间群为C 2/c。电阻率分析表明存在阿仑尼乌斯型热传导,基于晶胞体积减小解释了掺杂时活化能的增加。利用麦克斯韦 - 瓦格纳 - 西勒斯(MWS)弛豫和空间电荷或界面极化模型来解释介电常数随频率和温度的变化。介电损耗数据中的双弛豫峰表明存在两种不同活化能的弛豫机制。介电常数的实部( )和虚部( )使用修正的科尔 - 科尔方程进行拟合,该方程包括电导率项,表明在测量的频率和温度范围内存在非德拜型弛豫。阻抗分析表明了晶粒和晶界弛豫的贡献。使用阻抗和恒相位元件(CPE)进行的拟合证实了非德拜型弛豫。此外,电模量分析证实了具有热激活弛豫的离子性质,标度分析表明在测量的温度范围内存在类似类型的弛豫。使用修正的幂律来理解交流电导率数据的频率依赖性。修正幂律中指数(s)的温度依赖性表明,在室温以上,传导机制从近小极化子隧穿(NSPT)转变为相关势垒跳跃(CBH)。较大的ϵ值表明这些材料是电荷存储器件的潜在候选材料。